
ESD-TR-86-283 36086-34

'
Structured Hierarchical Ada Presentation Using

Pictographs (SHARP) Definition, Application

and Automation

WILLIAM E. BYRNE
SUSAN M. BRADSHAW
NEIL A. CRONIN
DAVID E. McDEVITT

AFGL/SULL
Research Library
Hanscom AFB, MA 01731

•

Arthur D. Little, Inc.
Program Systems Management Co.
Acorn Park
Cambridge, Massachusetts

September 1986

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Prepared For

ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
DEPUTY FOR DEVELOPMENT PLANS
HANSCOM AIR FORCE BASE, MASSACHUSETTS 01731

ADAI"^1

LEGAL NOTICE

When U. S. Government drawings, specifications or other data are used for any
purpose other than a definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whatsoever; and
the fact that the government may have formulated, furnished, or in any way sup-
plied the said drawings, specifications, or other data is not to be regarded by
implication or otherwise as in any manner licensing the holder or any other person
or conveying any rights or permission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

OTHER NOTICES

Do not return this copy. Retain or destroy.

This technical report has been reviewed and is approved for publication.

MARK V. ZIEMBA, 2Lt, USAF
Project Officer, Software
Engineering Tools & Methods

ARTHUR G. DECELLES, Capt, USAF
Program Manager, Computer Resource
Management Technology (PE 64740F)

FOR THE COMMANDER

ROBERT J.
Director
Software Design Center
Deputy for Development Plans
and Support Systems

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION

Unclassified
lb. RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY

2b DECLASSIFICATION / DOWNGRADING SCHEDULE

3 DISTRIBUTION/AVAILABILITY OF REPORT

Approved for Public Release; Distribution
Unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S)

36086-34
5 MONITORING ORGANIZATION REPORT NUMBER(S)

ESD-TR-86-283

6a NAME OF PERFORMING ORGANIZATION

Arthur D. Little, Inc.

Program Systems Management Co

6b OFFICE SYMBOL
(If applicable)

7a. NAME OF MONITORING ORGANIZATION

Hq, Electronic Systems Division (XRSE)
6c. ADDRESS (Cry, State, and ZIP Code)

Acorn Park
Cambridge, Massachusetts

7b ADDRESS (City, State, and ZIP Code)
Han scorn AFB

Massachusetts, 01731

8a. NAME OF FUNDING /SPONSORING
ORGANIZATION

Deputy for Development Plans

8b. OFFICE SYMBOL
(If applicable)

ESD/XRSE

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F19628-84-D-0011
8c. ADDRESS (City, State, and ZIP Code)

Hanscom AFB

Massachusetts, 01731

10 SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO

PROJECT
NO

TASK
NO

WORK UNIT
ACCESSION NO

11 TITLE (Include Security Classification)
Structured Hierarchical Ada Representation Using Pictographs (SHARP)
Definition, Application and Automation

12. PERSONAL AUTHOR(S)
William E. Byrne, Susan M. Bradshaw, Neil A. Cronin, David E. McDevitt

13a TYPE OF REPORT
Technical

13b TIME COVERED
FROM TO

14 DATE OF REPORT (Year, Month. Day)
1986 September

15 PAGE COUNT
348

16 SUPPLEMENTARY NOTATION

17 COSATI CODES

FIELD GROUP SUB-GROUP

18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

Ada
Software Cost/Schedule Estimation

19 ABSTRACT (Continue on reverse if necessary and identify by block number)
This paper presents a methodology for representing a large and complex computer program
using graphics and Ada-based annotated pseudo code. It describes the application of the
graphical representation, referred to as Structured Hierarchical Ada Representation using
Pictographs (SHARP), in the design and test of computer programs, and presents a concept of
operation for generating the graphics in a computer aided manner. The resulting tool is
considered important, since design and test costs account for over 60% of software develop-
ment costs. The tool also applies to software maintenance, which typically exceeds the
original development cost by more than 50%.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT

• UNCLASSIFIED/UNLIMITED Q3 SAME AS RPT • DTIC USERS
21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED
22a NAME OF RESPONSIBLE INDIVIDUAL

M.V. Ziemba, 2d Lt, USAF

22b TELEPHONE (Include Area Code)

(6170 377- 2656
22c OFFICE SYMBOL

ESD/XRSE
DD FORM 1473.84 MAR 83 APR edition may be used until exhausted

All other editions are obsolete

i

SECURITY CLASSIFICATION OF "HIS PAGE

Unclassified

ACKNOWLEDGEMENT

The definition of SHARP, and the investigation of its application and
automation, has been sponsored by the Computer Software Systems Program
Office, Software Design Center (XRSE) , Electronic Systems Division (ESD.i,
United States Air Force Systems Command, Hanscom AFB, Massachusetts 02173.
Funding for the effort has been provided by the Air Force Computer Resouiv.
Management Technology Program, PE 64740F, Project 2526 - Software Engineer-
ing Tools & Methods.

Program Element 64740F is the Air Force engineering development program tn
develop and transfer into active use the technology, tools, and technique::
needed to cope with the explosive growth in Air Force systems that use
computer resources. The goals of the program are to: (a) provide for the
transition of computer system developments in laboratories, industry, and
academia to Air Force systems; (b) develop and apply software acquisition
management techniques to reduce life-cycle costs; (c) provide improved
software design tools; (d) address the various problems associated with
computer security; (e) develop advanced software engineering tools,
techniques, and systems; (f) support the implementation of high-ordtr
languages, e.g., Ada; (g) address human engineering for computer systems;
and (h) develop and apply computer simulation techniques for the
acquisition process.

iii

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENT iii

SUMMARY 1

PART ONE: DEFINITION OF SHARP 15

CHAPTER I

BASIC FEATURES OF SHARP

1. INTRODUCTION 15

1.1 WHAT SHARP IS 15
1. 2 BACKGROUND 15

1.2.1 Projections for Software Acquisition Costs 15
1.2.2 The Evolution of Ada 16
1.2.3 The Need for SHARP 16
1.2.3 Beneficiaries of SHARP 17

1. 3 CHAPTER SCOPE 18

2 PICTOGRAPHS 19

2 .1 REPRESENTATION OF AN ADA SUBPROGRAM 19

2.1.1 Ada Subprogram Overview 19
2.1.2 Ada Subprogram Pictograph 19

2 . 2 REPRESENTATION OF AN ADA TASK 20

2.2.1 Ada Task Overview 20
2.2.2 Ada Task Pictograph 21

2 . 3 REPRESENTATION OF AN ADA PACKAGE 21

2.3.1 Ada Package Overview 21
2.3.2 Ada Package Pictograph 21

3 APPLICATION OF THE PICTOGRAPHS 22

3 .1 PROCESSES 22

3.2 REPRESENTATION OF THE HIGH LEVEL STRUCTURE
OF AN ADA COMPUTER PROGRAM 24

CHAPTER II

ADVANCED FEATURES OF SHARP

Page

INTRODUCTION 27

1.1 SOME IMPORTANT FEATURES OF ADA 27

1.2 PROGRAM DESIGN LANGUAGE 28

1.3 CHAPTER SCOPE 29

LEVELS OF SHARP ABSTRACTS 29

2 .1 INTRODUCTION 29

2 . 2 HIGH LEVEL SHARP ABSTRACTS 30

2.2.1 Principles of Object-Oriented Design With Ada. 30
2.2.2 Ada Package Catalog (Option A) 36
2.2.3 Ada Package Content Diagram (Option B) 38

2 . 3 INTERMEDIATE LEVEL SHARP ABSTRACTS 41

2.3.1 Hierarchy Diagram (Option C) 41
2.3.2 Invocation Diagram (Option D) 41

2 .4 LOWER LEVEL SHARP ABSTRACTS 49

2.4.1 Subprogram Data Flow Diagram (Option E) 49
2.4.2 Representing a Generic Subprogram in

Data Flow Diagram (Option E) 51
2.4.3 Task Rendezvous Diagram (Option F) 54
2.4.4 Data Structure Diagram (Option G) 64
2.4.5 Representation of Types 67

2 . 5 LOWEST LEVEL SHARP ABSTRACT 72

2.5.1 Annotated Ada-Based Pseudo Code (Option H).... 74
2.5.2 Data Structure Detail Glossary (Option I) 81

APPLICATION OF THE SHARP PICTORIAL ABSTRACTS 81

3.1 EXAMPLE 1 - SOFTWARE ABSTRACTION WITH PROCESSES 85

3.2 EXAMPLE 2 - SOFTWARE ABSTRACTION WITH PROCESS LEVELS. 85

3.3 EXAMPLE 3 - SOFTWARE ABSTRACTION WITH ADA PACKAGES... 87

3.4 EXAMPLE 4 - SOFTWARE ABSTRACTIONS WITH ADA TASKS 92

CHAPTER SUMMARY 97

vi

PART TWO: APPLICATION OF SHARP

CHAPTER III

BASIC ISSUES IN OBJECT-ORIENTED DESIGN WITH ADA

Page

1 INTRODUCTION 99

1.1 BACKGROUND 99

1. 2 CHAPTER SCOPE 100

EXAMPLES OF AN ADA-UNIQUE
OBJECT-ORIENTED DESIGN 100

2 . 1 ADA-UNIQUE DESIGN CONSIDERATIONS 100

2.1.1 Establishing an Ada-Unique
Design with SHARP 101

2.1.2 Example of an Ada Design for
High Maintainability 102

2 . 2 DESIGN VARIATIONS 106

2.2.1 Design for Execution Speed 106
2.2.2 Design Subject to Memory Constraint 114

CHAPTER SUMMARY 114

CHAPTER IV

STEPS FOR AN OBJECT-ORIENTED ADA-UNIQUE DESIGN

1 INTRODUCTION 119

1. 1 BACKGROUND 119

1. 2 CHAPTER SCOPE 119

2 OBJECT-ORIENTED ADA DESIGN 119

2 . 1 INTRODUCTION 119

vii

Page

2.2 STEPS FOR ESTABLISHING AN
OBJECT-ORIENTED DESIGN

2.2.1 Step 1 - Establish Processes
2.2.2 Step 2 - Establish Objects for

Each Process
2.2.3 Step 3 - Establish Interfaces Between

Objects
2.2.4 Step 4 - Establish Hidden Internal Design

of Each Object
2.2.5 Step 5 - Refine the Design

EXAMPLE

3.1 INTRODUCTION

3 . 2 ESTABLISHING PROCESS (STEP 1)

3.3 ESTABLISHING OBJECTS FOR EACH PROCESS (STEP 2)

3.3.1 Objects for the Experimental Data
Collection and Reduction Process

3.3.2 Objects for the Station Monitor Process
3.3.3 Objects for the Solar Panel Orientation

Process 138

3.4 ESTABLISHING INTERFACES BETWEEN
OBJECTS (STEP 3) 140

3.5 COMMENCE DESIGN OF OBJECT
IMPLEMENTATIONS (STEP 4) 145

3.5.1 Experiment Data Collection Object
Implementation (Package EXP_PLlA) 145

3.5.2 Data Base Object Implementation
(Package EXP_PL2A) 148

3.5.3 Command Coordinator Object
Implementation (Package EXP_PL1B) 152

3.5.4 Statistical Distribution Object
Implementation (Package EXP_PL2B) 156

CHAPTER SUMMARY 179

120

120

120

122

122
132

132

132

132

136

136
136

Vlll

CHAPTER V

SHARP IN DoD SOFTWARE DESIGN DOCUMENTS

Page

1 INTRODUCTION 161

1.1 BACKGROUND 161

1. 2 CHAPTER SCOPE 164

2 APPLYING SHARP IN SOFTWARE DESIGN DOCUMENTS 164

2.1 APPLICATION OF SHARP IN SOFTWARE
TOP-LEVEL DESIGN DOCUMENTS 165

2.1.1 Sample CSCI Architecture Diagram 165
2.1.2 Sample Diagram for Control and

Data Flow Between TLCSCs 168

2.2 APPLICATION OF SHARP IN SOFTWARE DETAILED
DESIGN DOCUMENTS 168

2.2.1 Sample Diagram Applicable to Decomposition
in a Traditional Manner 168

2.2.2 Sample Diagram Applicable to Decomposition
in an Object-Oriented Manner 17 3

3 CHAPTER SUMMARY 173

CHAPTER VI

TESTING OBJECT-ORIENTED ADA SOFTWARE

1 INTRODUCTION 179

1.1 BACKGROUND 179

1. 2 CHAFTER SCOPE 180

2 TESTING A COMPUTER PROGRAM IMPLEMENTED IN
AN OBJECT-ORIENTED MANNER ISO

2.1 HIGH LEVEL TESTS OF OBJECT INTERACTION IS]

2.1.1 Layers of Obj ect Packages LSI
2.1.2 Special Test Software 183
2.1.3 Testing Object-Oriented Software 18S

ix

Page

2.2 LOWER LEVEL TEST OF A SINGLE OBJECT
IMPLEMENTATION 191

2.2.1 Testing a Single Object Implementation
as a Whole 191

2.2.2 Testing the Internal Structure
of an Object Implementation 191

CHAPTER SUMMARY 19 7

CHAPTER VII

ESTIMATING THE COST OF OBJECT-ORIENTED ADA SOFTWARE

INTRODUCTION 199

1.1 BACKGROUND 199

1.1.1 Cost Savings Expected Due
to Ada Standardization 199

1.1.2 Cost Savings Expected Due
to Ada Technical Features 200

1.1.3 Cost Savings Expected Due to Object-Oriented
Software Development 200

1.1.4 Accounting for Ada Savings in Cost/Schedule
Estimation Models 201

1. 2 CHAPTER SCOPE 201

THE CONSTRUCTIVE COST MODEL (C0C0M0) 201

2 .1 INTRODUCTION 201

2.1.1 Versions of COCOMO 201
2.1.2 Modes of Software Development 202
2.1.3 Phases of Software Development 202
2.1.4 Definitions and Assumptions of COCOMO 204

2 . 2 BASIC COCOMO 204

2.2.1 Projecting Development Costs
with Basic COCOMO 204

2.2.2 Projecting Software Maintenance
Costs with Basic COCOMO 204

Page

2 . 3 INTERMEDIATE COCOMO 205

2.3.1 Projecting Development Costs with
Intermediate COCOMO 205

2.3.2 Projecting Software Maintenance
Costs with Intermediate COCOMO 206

2.3.3 Intermediate COCOMO and Component
Estimation 207

2 .4 DETAILED COCOMO 207

3 COCOMO AND THE COST/SCHEDULE ESTIMATION
OF OBJECT-ORIENTED ADA SOFTWARE 208

3 .1 INTRODUCTION 208

3.2 ESTIMATING THE COST OF OBJECT-ORIENTED
ADA SOFTWARE 208

3.2.1 Algorithm Unique to Estimating Object-
Oriented Ada Software Development Costs 209

3.2.2 Estimating the Number of Source Statements
for Object-Oriented Ada Software 211

3.2.3 Selecting Attributes for Object-Oriented
Ada Software Development 214

3.3 ESTIMATING THE TIME DURATION OF
SOFTWARE DEVELOPMENT (SCHEDULE) 216

4 EXAMPLE 21G

4.1 INTRODUCTION 216

4.2 ESTABLISHING ATTRIBUTES 217

4.3 ESTIMATING THE SIZE METRIC 219

4.4 PROJECTING DEVELOPMENT COSTS 22 7

4.4.1 Object-Oriented Ada
(Short-Term Costs) 227

4.4.2 Object-Oriented Ada
(Long-Term Costs) 229

4.4.3 FORTRAN/Assembly Language Costs 229

4 . 5 CONCLUSIONS 230

5 FUNCTION POINT ANALYSIS 232

6 CHAPTER SUMMARY 233

xi

CHAPTER VIII

TEACHING OBJECT-ORIENTED ADA

Page

1 INTRODUCTION 235

1.1 BACKGROUND 235

1.2 CHAPTER SCOPE 236

2 ADA INSTRUCTION FOR PROJECT MANAGEMENT
AND SYSTEM ENGINEERING PERSONNEL 237

2.1 ADA INSTRUCTION APPLICABLE TO PROJECT MANAGERS 238

2.1.1 Instruction for Project Managers in
Object-Oriented Ada-Unique Concepts 239

2.1.2 Instruction for Project Managers in
Ada-Unique Cost/Schedule Estimation 239

2.2 ADA INSTRUCTION APPLICABLE TO
SYSTEM ENGINEERS 239

2.2.1 Instruction for System Engineers in
Object-Oriented Ada-Unique Concepts 244

2.2.2 Instruction for System Engineers in
Testing Object-Oriented Ada Software 244

2.2.3 Instruction for System Engineers in
Ada-Unique Cost/Schedule Estimation 246

3 ADA INSTRUCTION FOR SOFTWARE ENGINEERS
AND PROGRAMMERS 246

3 . 1 TEACHING ADA IN A BOTTOM-UP MANNER 246

3 . 2 TEACHING ADA IN A TOP-DOWN MANNER 24 7

3.2.1 Lesson 1 - Process Abstraction 249
3.2.2 Lesson 2 - Process Interaction 249
3.2.3 Lesson 3 - Object Implementation

within Processes 250
3.2.4 Lesson 4 - Object Data Structure 257
3.2.5 Lesson 5 - Interaction of Object

Implementations 259
3.2.6 Lesson 6 - Abstraction Internal to

an Object Implementation 266

xix

Page

3.2.7 Lesson 7 - Implementing Processing
Internal to Program Units 2 72

3.2.8 Lesson 8 - Use of Existing Ada Packages
and Packages of Common Program
Units 27b

3.2.9 Lesson 9 - Ada at the Bottom and
Course Completion 277

4 CHAPTER SUMMARY 27 7

PART THREE: AUTOMATION OF SHARP

CHAPTER IX

PHASED DEVELOPMENT OF AUTOSHARP

1 INTRODUCTION 287

1.1 BACKGROUND 287

1.1.1 Computer Aided Design 288
1.1.2 Knowledge Aided Design (KAD)and Maintenance.... 289
1.1.3 Automatic Programming 289
1.1.4 Size Metric Derivation 290

1. 2 CHAPTER SCOPE 290

2 EXISTING CAD SYSTEMS 2('0

2 . 1 AdaGRAPH (PAMELA) 290

2.2 CAEDE 291

3 PHASES OF DEVELOPMENT 292

3 . 1 AUTOSHARP VERSION I (KAD) 292

3.1.1 Version I Description 292
3.1.2 Version I Operation 293
3.1.3 Scope of the AUTOSHARP Knowledge Base 295
3.1.4 Mapping the Output 297

3.2 AUTOSHARP VERSION II (CODING CAPABILITY) 297

3. 3 AUTOSHARP VERSION III (COST ESTIMATION) 50()

3 .4 AUTOSHARP METAKNOWLEDGE 302

4 BENEFITS OF AUTOSHARP 302

xiii

Pnge

APPENDIX A CRITERIA FOR SHARP 305

APPENDIX B SAMPLE ABSTRACTED ADA

"SKELETON" CODE LISTING 311

APPENDIX C REQUIREMENTS FOR A HYPOTHETICAL
SPACE STATION COMPUTER PROGRAM 321

APPENDIX D ACCOUNTING FOR CHARACTERISTICS OF A SOFTWARE
ACQUISITION USING COCOMO 323

REFERENCES 331

xiv

SUMMARY

This paper presents a methodology for representing a large and complex
computer program using graphics and Ada-based annotated pseudo code. It
describes the application of the graphical representation, referred to as
Structured Hierarchical Ada Representation using Pictographs (SHARP), in
the design and test of computer programs, and presents a concept of
operation for generating the grahics in a computer aided manner. The
resulting tool is considered important, since design and test costs account
for over 60% of software development costs. The tool also applies to
software maintenance, which typically exceeds the original development cost"
by more than 50%.

BACKGROUND

DoD has mandated the use of Ada in the implementation of mission-critical
software. Standardizing to a single high-order language will contribute to
Lower software life-cycle costs, since, for example, fewer compilers will
have to be developed and the labor force will not be subdivided among
several languages. Furthermore, it promotes the development of tools
applicable to the entire software life cycle, since with one language a
large market will exist for each tool.

In addition, proponents of Ada expect that its technical features will also
help reduce software development costs. For example, Ada packages can he
used to encapsulate reusable software, for such things a hardware driver;,
communication protocols, high and low level I/O, math functions and special
purpose algorithms. The Ada packages and their contents can be maa
general purpose through the Ada generics capability, whereby the name ol i
program unit, and typically the definition of its types and the range ••'
permissible values for passed parameters, are created during compilation.
(The process of creating a particular instance of the generic program ur.i'
is referred to as generic instantiation.)

Another important technical feature of an Ada package is its information
hiding capability. It can be used to provide the framework for the imple-
mentation of object-oriented designs, as means for controlling dependency
relationships between variables, types and program units.

In the past, global parameters and routines were shared among many program
units. If during development and maintenance any one of the global para-
meters or routines were modified to correct an error, the change COMI'.I

adversely affect many different parts of the computer program. When one
error was corrected by a change, several others often were introduced.
Seemingly innocent changes, at times, caused serious problems. However, by
localizing design complexity using principles of object-oriented design,
the effect of a change is trapped within the implementation of an objec;
itself.

Concept of an Object-Oriented Design

With an object-oriented design, a large computer program is composed using
multiple objects. Each object is a system component implemented : :i
software using a set of operations unique to it and a local state defined

in a data structure. The unique operations are known only to the internals
of the object implementation. Object implementations typically are
independent and interact with only one or two other object implementations.

Object Implementations in Ada Packages

With Ada, objects can be implemented in Ada packages, which act as contain
ers of data structures and other Ada program units. Like other Ada program
units, an Ada package consists of a specification and a body. The contents
of the specification are visible to other program units, while the contents
of the body are not accessible by program units external to the body.
Therefore, using Ada packages the complexities of object implementations
can be hidden in the package's body.

Parameters passing between object implementations can be accomplished by
communicating program units declared in the specification of the package.
To the extent possible, the passed parameters should not include variables
and flags used in the formulation of operations unique to the object
implementation. In this way, coupling by parameters passed between objects
can be avoided. If potentially coupling parameters are passed, with Ada
they can be of private or limited private types. In this way, accessing
program units have limited use of such passed parameters.

COSTS OF SOFTWARE DEVELOPMENT

The high cost of developing software constructed using coupled program
units has proven to be the rule and not the exception. In addition, as we
have already indicated, experience has shown the maintenance and improve-
ment of such software over ten years or so, once it is put to use, may cost
much more than the original development cost.

Cost models have been formulated and calibrated to estimate the cost of
such highly coupled software. For example, the Constructive Cost Model
(COCOMO) projects the cost to develop this software as a function of its
size, type of application and characteristics of the development process.
Although existing cost models have not been formulated or calibrated for
software developed in an object-oriented manner, they can be indirectly
used to project the costs. Figure i shows possible costs when comparing
the software developed in a traditional (highly coupled) manner to software
developed in an object-oriented manner using Ada.

The cost of software developed in a traditional manner was established by
directly applying COCOMO. The cost of software developed in an object-
oriented manner using Ada, was calculated using the following relationship:

(Cost) - (Design Cost) + (Object Implementation Cost)
+ (Object Implementation Integration Cost)

The design cost was established with COCOMO by assuming the cost to estab-
lish a traditional design is essentially equivalent to the cost to estab-
lish an object-oriented design.* The object implementation cost was
established by summing the cost to develop each object separately.

* Design costs for both traditional and object-oriented designs would
decrease significantly with an automated SHARP system, which is described
in Chapter IX. These savings, however, cannot be quantified at this time
and have not been considered in Figure i.

4000

3000

CO
X
h-
o
5 2000
2
<
5

8

1000

Embedded Mode
Traditional Costs Calculated
Using FORTRAN/Assembly
Coefficients in Table 6
Ada Costs Calculated Using
Long-Term Coefficients in
Table 6

TRADITIONAL

Upper
Limit.

Lower
Limit

I J
TOOK 200K 300K

SOURCE STATEMENTS

400 K 500K

FIGURE i. SOFTWARE DEVELOPMENT COSTS*

'See Section 4.4 of Chapter VII for a description of the estimation technique.

3

The integration of object implementations is not accounted for by COCOMO.
However, as a lower limit, this effort could be assumed to cost about tho
same as the cost to integrate an equal number of program units, since
loosely coupled interfaces between object implementations should not be
more complicated than typical program unit interfaces. The accuracy of
this assumption decreases as the extent of coupling between the implementa-
tions increases. In the limit, the cost to develop strongly coupled
objects approaches the cost to develop software in a traditional manner,
where strong dependency relationships drive costs.

Although we can argue where between the limits the expected cost of object-
oriented development using Ada should lie, most will agree that with
respect to computer programs, "bulk is bad". Using object-oriented design
principles, a "bulky" computer program can be developed as a set of
relatively small object implementations rather than one large computer
program with highly coupled routines. Each object can be developed
independently in a cost effective manner, and then integrated with other
object implementations.

As COCOMO and other cost models indicate, development costs increase more
than linearly with the size of a computer program. We feel this is in
large part, due to the increase in complex dependencies between variables,
types and program units. Thus, by using relatively small object implementa-
tions and constraining their interaction, software development costs
decrease.

This is especially relevant to extremely large computer software systems
like those needed for the Strategic Defense Initiative, projected to
consist of up to 50 million lines of source code. The complexity of depen-
dency relationships for such large software systems will drive software
costs very high, unless effectively controlled.

GRAPHICAL ABSTRACTION OF SOFTWARE DESIGNS

When written in accordance with effective style guidelines, most feel a
computer program written in Ada is locally readable to those familiar with
the Ada language. If we examine a fragment of Ada code, we can realize the
design of that fragment. However, readable software means more than this.
We must be able to easily understand the relationship of the fragment to
the whole.

In the past, hierarchical block diagrams have been used to represent the
interrelationship between program units. However, conventional hierarchi-
cal block diagrams are not adequate with Ada since they do not distinguish
between the different kinds of Ada program units; they do not represent
concurrent program unit execution that takes place in Ada; and they do not
provide a mechanism for representing the unique capabilities of Ada to
partition a large and complex computer program into understandable parts
using object-oriented techniques.

Recognizing this problem, R.J.A. Buhr of Carleton University, Ottawa,
Canada, has suggested the need for "blue-prints" of computer programs to be
implemented in Ada. Although he concedes such software blueprints may not

be necessary during the development of small computer programs, Buhr argues
that they are needed to effectively represent the structure of a large and
complex computer program.

To illustrate this point, contrast the difference in design efforts under-
taken by architects, who design large buildings, to home handymen, who may
add a room to their home. The home handyman can proceed with minimal
design information, making fragmented design decisions as he proceeds. A
large architectural construction project, on the other hand, utilizes blue-
prints and other design documentation. The construction of a building is
undertaken by many people who divide the construction project into a set of
manageable parts and communicate using blueprints.

In the same manner, small software efforts undertaken by one or two people
can proceed without partitioning or design structure information. However,
as in construction, a plateau of project size and complexity is reached in
software where it is not cost effective to proceed without explicit manage-
able parts and blueprints that represent the manageable parts.

The Need for Graphical Abstracts

We suggest that levels of abstracts are needed to represent the design of
large and complex computer programs to be developed in a traditional or
object-oriented manner and implemented using Ada. The abstracts can be
pictorial representations of the design that comprise or concentrate
within themselves the essential qualities of specific aspects of the
design. Such abstracts, if readily readable, can help close the gap In
communication between different members of a software development team.
Such communication is critical to cost effective implementation of large
and complex software systems.

In practice, pictorial abstracts are beneficial to both government and
contractor personnel. In preparation for a software acquisition, the
graphical presentation of large and complex Ada software helps instructors
teach Ada in the context of the overall software system. During the
acquisition of Ada software, contractor managers needs Ada abstracts to
intellectually grasp the problem they must manage. A programmer can use
Ada abstracts to help understand what it is that he must implement and
communicate to a designer expansions or modifications he has introduced
into the design.

Government reviewers need Ada abstracts to understand the design that they
must ultimately approve. Review of many thousands of lines of pseudo-code
or source code in a short period of time is often very difficult, if not
impossible. In contrast, review of levels of the design provided in
different pictorial abstracts is relatively easy.

Software engineers need abstracts to help present designs at design reviews
and within design documentation. In this way, among other things, the
consistency of variables passed between object implementations can be
reviewed.

In the past, compilers did not check the consistency of variable and other
declarations made in various parts of a computer program. Accordingly, a

program would compile easily and a unit test could quickly be initiated.
Of course, problems associated with declaration inconsistencies had to be
resolved as part of the testing process.

With Ada, compilers and linkers check the consistency of declarations. For
example, the input/output parameters of a program unit must have their type
(e.g., integer or floating point) defined, and checked at compilation and
linking time. The consistency of these definitions are checked by matching
the type definitions in the specification of a calling program unit to the
type definitions in the specification of the called program unit.

Ada-unique diagrams and pictorial abstracts are needed to establish depen-
dency relationships between object implementations used to establish a
large Ada computer program. Failure to establish correct dependency
relationships between the implementations will result in several time
consuming compilation iterations during the integration of object implemen-
tations. Although incremental compilation is possible with Ada, all
dependent pieces of a computer program must be recompiled at the same time.
Thus, recompilation can be a significant effort.

The whole problem, of course, is magnified as the size of the Ada computer
program grows. Such growth is possible today because of the capacity
available in processing hardware. Today, technology offers potentially
unlimited processing power and memory, thus, more and more complex applica-
tions are being undertaken.

Levels of Abstracts

Recognizing the need for graphical abstracts applicable to representing the
design of computer programs, we have defined a set of Ada-unique abstracts
that are applicable to both traditional and object-oriented Ada-unique
designs. The graphical abstraction system is referred to as SHARP (Struc-
tured Hierarchical Ada Representation using Pictographs). It provides a
notation that can be used to represent extremes in combinations of Ada pro-
gram units, variables and types that a designer may choose, regardless of
whether an object-oriented or more traditional design approach is being
taken.

The graphics utilize pictographs to represent Ada program units. Specifi-
cally, a square is used to represent a subprogram, a parallelogram to
represent a task and a rectangle to represent a package. In each case, the
geometric figure is divided by a horizontal line into two parts, a narrow
part representing the program unit's specification, and a wide part
representing its body. The pictographs can be interconnected to represent
the main program and its interface with external entities. For example,
consider the diagram shown in Figure ii. In this diagram, the tasks shown
are responsible for servicing a communication link, a terminal, a work
station and an interfacing microprocessor. The small rectangle labeled PI
indicates a package utilized by the main program, made available through
the Ada "with" clause.

The pictographs can be used to establish various other graphical options to
represent the design of the program units declared in procedure MAIN. At a
high level, graphical options can be used to represent Ada packages, which

Communications Terminal

Link
Work Station Processor Y

M 1 i

r (

ED

r

1
1
1
1
1

f
1
1
1
I
1

1
1 ^

Main

"/ \

/ / /

/ / / / / / / /
Comm_A Comm_ 3 ws Mlcro_Y

FIGURE ii. ABSTRACT FOR THE MAIN PROGRAM

can be used to encapsulate object implementations in the manner shown in
Figure iii, where generic reusable software is represented by dashed lines.
Such object implementations interact through communicating Ada program
units visible in the package specification, as represented in the invoca-
tion abstract shown in Figure iv.

At an intermediate level, graphical options can be used to represent
program units used to implement the internal complexities of an object
implementation. Specifically as illustrated in Figure v, the structure of
nested program units within a program unit declared in the specification of
a package can be represented using a Hierarchy Diagram. The sequential set
of subprogram calls within this program unit and the concurrent execution
of Ada tasks within it can be represented using an Invocation Diagram.

At a yet lower level of design abstraction, options can be used to repre-
sent selective detail. As illustrated in Figure vi, these abstracts can be
thought of as "blow ups" of entities identified in invocation diagrams.
Abstracted detail of data flow between subprograms can be shown in a
Subprogram Data Flow Diagram. Abstracted detail for task rendezvous can be
shown in a Task Rendezvous Diagram. The visibility of type, constant and
variable declarations can be shown in a Data Structure Diagram.

At the lowest level of abstraction, annotated pseudo code can be used to
represent the bodies of each Ada program unit, as also illustrated in
Figure vi. For each body, the pseudo code accounts for such things as
logic, decisions, algorithms, program unit calls, input/output, generic
instantiation and exceptions.

COMPUTER-AIDED SOFTWARE DEVELOPMENT

In order to implement large and complex computer programs in a cost effec-
tive manner, technological advancements in software development are neces-
sary. Knowledge-aided design (KAD) systems that have been automated for
Ada would undoubtedly significantly help reduce software development and
maintenance costs. With them, software designers can rapidly generate
abstracted design representations. The abstracts can be reviewed and the
design representation iterated in order to, in some sense, optimize the
design. Knowledge built into the KAD system helps inexperienced designers
without extensive knowledge of Ada and object-oriented techniques. In this
way, typical inefficiencies in design development and representation can be
kept to a minimum.

Upon system turnover to users, the automatically generated graphical
abstracts can be used to support software maintenance. The maintainer will
be able to selectively produce abstracts that, in a systematic manner, zero
in at the touch of a terminal key on parts of the program he must modify.

The abstracts will make the complexities of the design readily apparent, as
opposed to culling thousands of statements in a a source code listing. The
exclusive use of source code to maintain a large and complex computer pro-
gram has proven to be very expensive, as we have already indicated. Such a
KAD system could be developed as the first phase in the automation of
SHARP, as illustrated by Item a of Figure vii.

P2

^

P2

f P3 •

P4

-^

P3

P2

P4

FIGURE iii. ABSTRACTS FOR OBJECT IMPLEMENTATIONS IN ADA PACKAGES

Main

/ \

n
PI

"

P2

r — i'

P3 Pi

FIGURE iv. ABSTRACT FOR INTERACTION OF OBJECT IMPLEMENTATIONS

7^
Package

S
B
u

nxi o
z.

Hierarchy Diagram

Invocation Diagram

FIGURE v. REPRESENTING THE INTERNAL COMPLEXITIES OF AN OBJECT IMPLEMENTATION

10

Invocation Diagram

Task Rendezvous Diagram

"f"

Subprogram Data Flow Diagram

••aaDDD
iaaoo

Data Structure Diagram

B«gin

"1
1
1
1

J

 - —

End;

Program Unit Operations

FIGURE vi. REPRESENTING SELECTED DETAIL IN AN OBJECT IMPLEMENTATION

II

In addition to being used to establish design abstracts, the design know-
ledge base established by a user of a KAD system can also be mapped into
Ada source code. The code would encompass aspects of the design directly
accounted for in the design abstracts. This code could, in turn, be
expanded and refined by a programmer using a syntax directed editor. Such
an automatic programming capability could be developed as the second phase
in the automation of SHARP, as illustrated by Item b of Figure vii.

Furthermore, the design knowledge base could also be mapped into a size
metric. The size metric, along with user inputs on the attributes of the
software acquisition, could be used as inputs to a cost estimation algo-
rithm that projects the cost to build the large and complex computer
program. In this way, the cost estimation problem is merged with the
automated design process so that meaningful estimates can be made. Such a
cost estimation capability could be developed as the third phase in the
automation of SHARP, as illustrated by Item c of Figure vii.

Applying such a computer-aided software engineering tool in conjunction
with object-oriented designs, is needed to help effectively acquire
software and reduce software development and maintenance costs. The
automated SHARP (AUTOSHARP) system is especially applicable to the
development of large software systems like those required for the Strategic
Defense Initiative. We feel the development and transfer of such tech-
nology into use will bring significant improvement in software productivity.

12

GRAPHICS
CENE«ATOfl

1.\PPf M

... B

•VLIIUi^AMP
KNfiwi fncf

QA il

n

$f H MACHlNl

/% ff=\

li) KNOWLEDGE-AIDED DESIGN

AO lU'in-VMV
* NUWLI UO(

tb) AUTOMATIC PROGRAMMING

FIGURE v... COMPUTER AIDED SOFTWARE ENGINEERING

13

ADA

SOURCE
CODE
LISTING

(cl COST ESTIMATION

FIGURE vii. (CONCLUDED)

14

PART ONE: DEFINITION OF SHARP

CHAPTER I

BASIC FEATURES OF SHARP

This chapter introduces Structured Hierarchical Ada Representation using
Pictographs (SHARP). It describes the need for SHARP and the beneficiaries
of SHARP. It establishes pictographs that can be used to represent Ada
program units and describes the use of the pictographs to graphically
represent the structure of an Ada computer program at a high level.

This chapter is very basic in nature and is meant as an introduction to
those unfamiliar with the Ada language.

1 INTRODUCTION

1.1 WHAT SHARP IS

SHARP is defined by a criteria for establishing pictorial abstracts of a
large and complex computer program to be programmed using the DoD high
order language Ada (ANSI/MIL-STD 1815A). Standards of the criteria dictate
how to establish selective pictorial options, encompassing Ada unique
versions of high and intermediate level abstracts for Ada packages, program
unit hierarchy and program unit invocation. In addition, the pictorial
options can be used to establish low level abstracts for Ada task
rendezvous, data declarations and data flow between Ada subprograms. At
the lowest level, options utilize annotated pseudo code to represent
computer program logic and operations on variables. At this lowest level.
SHARP junctions with design presentations that utilize Ada-based program
design language.

The abstracts apply to traditional design approaches as well as object-
oriented. The object-oriented approach is emphasized since it is the
approach expected to be widely used in the development of large and complex
Ada computer programs.

1.2 BACKGROUND

1.2.1 Projections for Software Acquisition Costs

The performance of defense systems has become increasingly dependent upon
embedded computers. The development of software needed to program the
embedded computers currently incurs a significant cost during system
acquisition.

* In terminology of SHARP, an abstract is a pictorial representation that
comprises or concentrates in itself the essential qualities of specific
aspects of an Ada computer program (e.g., rendezvous between tasks or
data flow between subprograms); synonym - pictorial compendium.

15

The acquisition of a single defense system can include the development of
computer programs consisting of more than 600,000 instructions. Presently,
software development costs during one system acquisition can exceed 60
million dollars. Moreover, the operation, maintenance, and continued
improvement of the software over 10 years or so once a system is put to use
can cost as much as 50 times the software development cost.

An industry team, under the guidance of the Electronic Industries
Association, has projected that by 1990 overall annual DoD software costs
will reach 32 billion dollars, while annual hardware costs will reach only
6 billion dollars.

Since annual software costs have been projected to cost more than six times
annual hardware acquisition costs by 1990, DoD has recognized the need to
develop and implement capabilities that will reduce software acquisition
and maintenance costs. Accordingly, as one step in controlling these costs,
DoD has sponsored the development of Ada.

1.2.2 The Evolution of Ada

The military services, U.S. industry, and our NATO allies were intimately
involved in the definition of requirements for Ada. During 1975 and 1976,
preliminary requirements for Ada were distributed to a large audience for
comment. In June 1976, a complete set of Ada requirements were published.

DoD used two criteria when establishing the requirements. First, Ada had
to be a high quality product. Second, Ada was meant to accrue foreign
acceptance and domestic acceptance outside the defense industry.

With this in mind, DoD released an international request for proposal
(RFP), asking for a preliminary design of the Ada language. Four contrac-
tors were selected from those responding to the RFP for the preliminary
design. They were Softech, Intermetrics, SRI International, and Honeywell.

Upon completion, the preliminary designs were distributed for comment.
Eighty formal evaluation reports were received, having been submitted by
DoD organizations, U.S. and European industry, plus the Ministries of
Defense of the United Kingdom, France, and Germany. In April 1978 and in
April 1979, public hearings were held to give software engineers throughout
the world an opportunity to gain an understanding of the rationale for
design decisions.

After extensive review, the Honeywell design was chosen. In 1983, the
formal definition of the Ada language was standardized as ANSI/MIL-STD
1815A.

1.2.3 The Need for SHARP

When written in accordance with effective style guidelines, most feel a
computer program written in Ada is locally readable to those familiar with
the Ada language. If we examine a fragment of Ada code, we can realize the
design of that fragment. However, readable software means more than this.
We must be able to easily understand the relationship of the fragment to
the whole.

16

In the past, hierarchical block diagrams have been used to represent the
interrelationship between program units. However, conventional hierarchi-
cal block diagrams are not adequate with Ada since they do not distinguish
between the different kinds of Ada program units; they do not represent
concurrent program unit execution that takes place in Ada; and they do not
provide a mechanism for representing the unique capabilities of Ada to
partition a large and complex computer program into understandable parts
using object-oriented techniques.

Recognizing this problem, R.J.A. Buhr of Carletcoi University, Ottawa,
Canada, suggests in his book System Design with Ada the need for "blue-
prints" of computer programs to be implemented in Ada. Although he concedes
such software blueprints may not be necessary during the development of
small computer programs, Buhr argues that they are needed to effectively
represent the structure of a large and complex computer program.

To illustrate this point, contrast the difference in design efforts under-
taken by architects, who design large buildings, to home handymen, who may
add a room to their home. The home handyman can proceed with minimal
design information, making fragmented design decisions as he proceeds. A
large architectural construction project, on the other hand, utilizes
blueprints and other design documentation. The construction of a building
is undertaken by many people who divide the construction project into a set
of manageable parts and communicate using blueprints, which present design
information in a series of pictorial abstracts.

In the same manner, small software efforts undertaken by one or two people
can proceed without partitioning or design structure information. However,
as in construction, a plateau of project size and complexity is reached in
software where it is not cost effective to proceed without explicit:
manageable parts and blueprints that represent the manageable parts.

1.2.4 Beneficiaries of SHARP

Pictorial abstracts of SHARP are beneficial to both government and contrac-
tor personnel. In preparation for a software acquisition, the graphical
presentation of large and complex Ada software will help instructors teach
Ada in the context of the overall software system. Specifically, it will
help the instructor explain the notions of design abstraction and informa-
tion hiding in conjunction with object-oriented or other design techniques;
and how such designs are facilitated with Ada.

During the acquisition of Ada software, contractor and government personnel
need Ada abstracts. Contractor managers need Ada abstracts to intellectu-
ally grasp the problem they must manage. Experience has shown that
misunderstood projects will most likely go astray. Initial budgets tend to
be insufficient and resource allocation during the course of the project
may not be appropriate.

A programmer can use Ada abstracts to help understand what it is that he-
must implement. Also, the programmer needs a mechanism for communicating
back to a designer expansions or modifications he has introduced into the
design.

17

Government reviewers need Ada abstracts to understand the design that they
must ultimately approve. Review of many thousands of lines of pseudo code
or source code in a short period of time is often very difficult, if not
impossible. In contrast, review of levels of the design provided in
different pictorial abstracts will be relatively easy.

Later in the software life cycle, SHARP would also help the government in
the maintenance of large Ada computer programs. With SHARP automated
within a workstation, maintainers will be able to selectively produce Ada
abstracts that zero in, at the touch of a terminal key, on the parts of a
computer program that must be modified. The maintainer's learning curve
will be faster with understandable abstracts complementing documentation
and Ada source code.

Software Engineers need abstracts to present designs prepared using object-
oriented design techniques, which can be uniquely implemented using Ada.
For example, Ada abstracts are needed to present such designs taking into
account mechanisms in Ada for (a) layers of packages, (b) levels of other
program units and (c) hiding information within the packages and other
program units. These Ada mechanisms are especially important because of
the criticality of controlling complicated dependency relationships
possible in large, complex computer programs.

In the past, compilers did not check the consistency of variable and other
declarations made in various parts of a computer program. Accordingly, a
program would compile easily and a unit test could quickly be initiated.
Of course, problems associated with declaration inconsistencies had to be
resolved as part of the testing process.

With Ada, compilers and linkers check the consistency of declarations. For
example, the input/output parameters of a program unit must have their type
(e.g., integer or floating point) defined, and checked at compilation and
linking time. The consistency of these definitions are checked by matching
the type definitions in the specification of a calling program unit to the
type definitions in the specification of the called program unit.

Ada-unique diagrams and pictorial abstracts are needed to establish
dependency relationships in a large Ada computer program. Failure to
establish correct dependency relationships will result in several time
consuming compilation iterations. Although incremental compilation is
possible with Ada, all dependent pieces of a computer program must be
recompiled at the same time. Thus, recompilation can be a significant
effort.

The whole problem, of course, is magnified as the size of the Ada computer
program grows. Such growth is possible today because of the capacity
available in processing hardware. Today, technology offers potentially
unlimited processing power and memory, thus, more and more complex
applications are being undertaken.

1.3 CHAPTER SCOPE

In this chapter, pictographs are defined to represent Ada program units and
the interconnection of the pictographs is described in the representation
of the high level design of an Ada computer program.

18

Section 2 describes Ada program units and comments on their use as the
building blocks of an Ada computer program. It introduces the pictographs
established by SHARP to graphically represent the Ada program units.
Section 3 discusses utilizing Ada program units to establish the upper
levels of a design for an Ada computer program. Section 4 states
conclusions.

2 PICTOGRAPHS

The basic building blocks of an Ada computer program are the program units
called subprograms, tasks, and packages. As suggested by Buhr, we can
compare the use of these building blocks in the implementation of Ada
computer programs to the implementation of electronic hardware. Hardware
components are connected together using cables, plugs and sockets, all with
well defined interface characteristics. Several of the hardware components
can operate concurrently. Correspondingly, Ada can be conceptually thought
of as program units connected together with well defined interfaces and
with several of the program units operating concurrently.

This section provides an overview of the Ada program units and establishes
pictographs that can be used to graphically represent them.

2.1 REPRESENTATION OF AN ADA SUBPROGRAM

2.1.1 Ada Subprogram Overview

As a basic building block of an Ada computer program, an Ada subprogram can
be used to encapsulate a set of logically related operations on variables,
data manipulations and other processing. This permits dividing sequential
processing into manageable pieces. There are two kinds of subprograms --
procedures and functions.

The main program in Ada is an Ada procedure that is invoked upon activation
of the Ada computer program. In addition, Ada procedures are nested within
other Ada program units and invoked through a procedure call statement.

Ada functions are also nested within other Ada program units. However, in
contrast to a procedure, a call to a function is embedded in an expression.
Therefore, a function is invoked upon execution of an expression.

A subprogram consists of a specification and a body. The specification is
a single Ada source instruction that establishes the name of the subprogram
and the characteristics of its parameter passing.

The body implements processing to be undertaken upon execution. It con-
sists of multiple Ada source instructions, which are clearly distinguish-
able from the specification.

2.1.2 Ada Subprogram Pictograph

SHARP utilizes a square to represent an Ada subprogram. The square is
divided into a small narrow rectangle representing the subprogram's
specification and a large rectangle representing its body, as illustrated
in Figure 1.

19

FIGURE 1. PICTOGRAPH FOR AIM ADA SUBPROGRAM

2.2 REPRESENTATION OF AN ADA TASK

2.2.1 Ada Task Overview

Ada (asks are the building blocks of an Ada computer program that execute
concurrently. Within a single processor, an Ada task operates in parallel
with other Ada tasks in the time-slice sense of the word under control of
an Ada run-time environment.

Ada tasks can be nested within the main program of an Ada computer program
to account for all processing to be undertaken concurrently by that
computer program. Ada tasks are also used to service interrupts, implement
action queues, and implement other concurrent operations.

An Ada task consists of a specification and a body, in a manner similar to
an Ada procedure. In contrast to the specification of a procedure which is
a single Ada statement, the specification of a task consists of one or more
Ada source statements that establish the name of the task and describe the
characteristics of inter-task communication. Also, in contrast with
procedures which are invoked upon request by a caller, task interaction is
consummated by the callee (or acceptor) rather than the caller. The word
"rendezvous" is used to describe such task interaction.

The body of a task implements processing to be undertaken upon execution.
As is the case of a procedure, the body consists of multiple Ada source
statements, which are clearly distinguishable from the specification.

20

2.2.2 Ada Task Pictograph

SHARP utilizes a parallelogram to represent an Ada task The parallelogram
is divided into a small narrow parallelogram represent lug it :; specifieal ton
and a large parallelogram representing its body, as illustrated in Figure 2.

FIGURE 2. PICTOGRAPH FOR AN ADA TASK

2.3 REPRESENTATION OF AN ADA PACKAGE

2.3.1 Ada Package Overview

An Ada package is the program unit that acts as a container for other
program units, data and data type declarations. An Ada package has its own
specification and body. The specification consists of one or more instruc-
tions. It is used to identify the name of the package. It is also used to
establish the identity of program units it contains that can be called by
program units external to the package. The package specification may also
include data and data type definitions that are accessible by other Ada
program units.

The body of an Ada package contains the bodies of the program units
declared in the specification. It also may contain data, data types plus
specifications and bodies of program units that cannot be directly accessed
by program units external to the package. The latter capability is basic
to the implementation of object-oriented software designs with Ada. In
this context, packages are used to encapsulate the implementation of
objects, as discussed in subsequent chapters. Packages also serve as a
mechanism for encompassing common program units and off-the-shelf reusable
modules.

2.3.2 Ada Package Pictograph

SHARP utilizes a rectangle to represent an Ada package. The rectangle is
divided into a small narrow rectangle representing the package's specifica-
tion and a large rectangle representing its body, as illustrated in item a
of Figure 3.

The specification of accessible program units within an Ada package are
shown within the package's specification. The bodies of these program
units program unit are shown within the package's body, as shown in item b
of Figure 3. Ada program units hidden in the package's body and not
accessible to program units external to the package, are not shown. Tho
presence of variables, constants and type declarations are represented by
rectangles enclosing slanted lines, as shown in item c of Figure 3.

3 APPLICATION OF THE PICTOGRAPHS

The designer of a large and complex computer program to be implemented in
Ada, as an initial step in the design process, typically establishes
concurrent processing threads or processes. With Ada, each process is
established by a task declared in the main program. The representation of
this level of an Ada design is discussed in this section.

3.1 PROCESSES

In a computer system, resident software typically has to satisfy multiple
demands. For example, user commands and communication interface requests
may simultaneously compete for a computer's processing time. A computer
program must respond in a timely manner to the commands and requests, even
when they are received at about the same instant in time.

A chain of modules can be written to implement the operations on variables,
data manipulation, logic, exceptions and other processing needed to respond
to each user command and communication interface request. In addition,
chains of modules may have to be written to automatically initiate process-
ing within a computer program on a periodic or some other basis. For
example, a software built-in-test of equipment may be periodically initia-
ted or processing may automatically consummate when a sensor value reaches
a critical value.

For high order languages like FORTRAN, these threads are typically referred
to as processes that can be concurrently executed directly under operating
system control (in a time slice manner), thus providing the timely response
needed. In Ada, the concurrent execution can be accomplished using Ada
tasks.

As a general rule, characteristics of processes include the following:

• Processes account for logic, operations on variables, data
manipulation and other processing needed to (a) satisfy user
commands and communication interface requests and (b)
perform processing automatically initiated on a periodic or
some other basis.

• Processes are loosely coupled.

• Processes can execute concurrently if necessary.

22

(a) BASIC PICTOGRAPH FOR AN ADA PACKAGE

(b) REPRESENTING ACCESSIBLE ADA SUBPROGRAMS AND TASKS

(c) REPRESENTING DATA STRUCTURES IN AN ADA PACKAGE

FIGURE 3. PICTOGRAPHS FOR ADA PACKAGES

23

3.2 REPRESENTATION OF THE HIGH LEVEL STRUCTURE OF AN ADA COMPUTER PROGRAM

WLt.li AIIJI , the Implementation of processes can be accomplished using A<li
tasks declared in the main program, as well as directly with the operating
system. Each task can implement the requirements assigned to a specific
process. This approach facilitates greater portability of the Ada computer
program and does not necessitate knowledge of operating system configura-
tion to establish processes. However, it may not be as memory and time
efficient as directly using the operating system.

The set of Ada tasks can be graphically represented using the pictographs
of SHARP. For example, Figure 4 shows Ada tasks declared in the main
program to service communication links, multiple terminals, work stations
and an interfacing microprocessor. In the diagram, straight lines are
drawn from the body of the main program to the specifications of process
tasks, and dotted lines are drawn from the tasks to a geometric figure
introduced to represent the external entity the task must interact with.

The diagram also represents main program access to an Ada package through
the Ada "with" clause. In Figure 4, the main program access to package
TEXT_IO is represented by a small rectangle with a line drawn from it to
the specification of the main program.

Furthermore, the diagram indicates subprograms nested in the body of
procedure MAIN. The designer might want to use procedures, for example, to
establish initial conditions at the start of execution of the large Ada
computer program; and to establish restart conditions.

24

<
cr
a
o
X
a.

<
S
LU

Z
I-
o

n
UJ
CO
LU
cr
a.
JJ
cr

(i

25

CHAPTER II

ADVANCED FEATURES OF SHARP

This chapter describes a graphical technique for presenting the object
oriented design of large and complex computer programs to be implemented
using Ada. The graphics present abstracts (i.e., pictorial overviews) of
Ada computer programs, each of which applies to a different level of
design. At the highest level, the abstracts represent Ada packages that
may be used to encapsulate major partitions of a large Ada computer
program. These abstracts potentially account for large amounts of code,
possibly 10,000 source statements or more.

At an intermediate level, the abstracts can be used to represent the
hierarchy and invocation of program units nested, for example, within a
program unit declared in the specification of a package. The hierarchy
diagram represents levels of nested program units and an invocation diagram
represents concurrent processing with Ada tasks as well as sequential calls
to multiple subprograms. These abstracts may account for as many as 5,000
source statements.

At a lower level, abstracts can be used to represent design detail. These
abstracts can be envisioned as "blow ups" of entities identified in an
invocation diagram. The abstracts represent details associated with task
rendezvous, data flow between program units and data structures. At the
lowest level, annotated pseudo code is used to represent operations, logic,
input/output, generic instantiation and exception handling within the body
of a program unit.

The SHARP abstracts can be used to pictorially represent all extremes of an
Ada design. They can be generated using a software graphic package. In
this way, we can generate Ada abstracts in a timely manner and easily
iterate them to update or optimize an Ada design.

1 INTRODUCTION

1.1 SOME IMPORTANT FEATURES OF ADA

Ada provides a complete set of general purpose language features. As a
programming language, Ada requires that both algorithms and data structures
are specified precisely, and that the consistency in the use of variable
types is verified by a compiler. Ada facilitates the construction of very
large programs by providing extensive facilities for program unit modulari-
zation.

As a basic and important capability, Ada provides a framework for the
construction of large programs using object-oriented design techniques,
principally due to its capability to hide information in a set of Ada
packages. Each package can be used to encapsulate a data structure local
to one or more objects and operations unique to the objects.

27

A package consists of two parts - a specification and a body. Only
entities contained within the package's specification can be accessed by
program units external to it. The body of a package is used to implement
complex operations on variables, logic and manipulation of data unique to
the objects contained in the package.

A package thus allows controlled access to the results of complex and
potentially lengthy programming operations and logic. As such, it provides
a powerful mechanism for program modularization. A large computer program
(e.g., 600,000 lines of code) can be composed with a set of packages, each
with a controlled interface to other packages. In this way, potentially
devastating dependency relationships across the large computer program can
be controlled by careful design of package interfaces.

The development of each package itself may be a very complex and difficult
job. Ada provides facilities to implement the bodies of program units
declared in the specifications of packages, in accordance with the princi-
ples of software abstraction and information hiding.

As an example of software abstraction, a small and easily understood
portion of the program unit is implemented at one level, while the
implementation of the rest of the computer program is deferred to other
levels through calls to Ada subprograms and activation of Ada tasks. At
each of the other levels, the process is repeated.

1.2 PROGRAM DESIGN LANGUAGE

As discussed in subsequent chapters, designers of large and complex Ada
computer programs can establish a set of packages to encompass its major
parts, must carefully design each package interface so as to constrain
potentially complex dependency relationships, and can design the internals
of each package in an abstracted manner. Aspects of the computer program's
design can be presented using Ada code (or a subset or superset of Ada
code). For example, Ada code for high level program units and their
specifications have been referred to as Ada Program Design language (PDL).
However, Ada-based PDL may be difficult to read by those not familiar with
typing and and other aspects of the Ada language. As stated in the docu-
ment Program Manager's Guide to Ada 3 :

'Program managers. hardware designers. and communications
engineers who are unfamiliar with PDL may find it difficult to
review design documentation that consists largely of PDL."

In addition, some feel that Ada-based PDL by itself is not sufficient to
represent the design of a large and complex computer program. When written
in accordance with effective style guidelines, most feel a computer program
written in Ada is locally readable (to those familiar with the Ada lan-
guage). If we examine a fragment of Ada code, we can realize the design of
that fragment. SHARP agrees and, in fact, utilizes annotated pseudo code
similar to Ada code (i.e., a form of PDL) to present the design of opera-
tions on variables, logic and other processing within the bodies of sub-
programs and tasks. However, this utilization of Ada-based pseudo code is
only employed at the very lowest level of SHARP design abstraction. As
stated in the Program Manager's Guide to Ada:

28

"PDL does not totally bridge the gap between the system level
specification and the coded program. The top level software
system design must be expressed."

Futhermore, Ada-based PDL for a computer program written in Ada may, in
essence, be nothing more than a first "cut" at the final Ada code itself.
As stated in the Program Manager's Guide to Ada:

"If the implementation language and the PDL are the same (i.e.,
full Ada), programmers will tend to begin coding before the
design is complete and verified."

Clearly, higher level abstracts are needed to present the set of packages
used to compose a large Ada computer program. Abstracts are also needed to
present the design of each package body. These abstracts must represent
only essential aspects of Ada at a much higher level than that provided by
PDL. The pictorial notation of SHARP can be used to establish such high
level abstracts in a concise manner.

SHARP was developed recognizing that lower level abstracts are also needed,
when a design reaches maturity and a programmer can become involved in the
implementation of the design. Accordingly, SHARP provides lower level
abstracts to represent such things as task rendezvous, data flow between
subprograms, generics, and the visibility of information in data
structures. However, each of these abstracts is at a substantially higher
level than PDL.

1.3 CHAPTER SCOPE

Section 2 describes the selective pictorial abstracts of SHARP. Section 3
provides generic examples of the use of SHARP, in the context of a designer
presenting an Ada software design prepared in an abstracted manner.

2 LEVELS OF SHARP ABSTRACTS

2.1 INTRODUCTION

As discussed in Chapter I, Ada facilitates the implementation of real-time
computer programs embedded within weapon systems. As such, Ada computer
programs must respond in a timely manner to independent commands, even when
they are received at about the same instant in time. Ada tasks can be
declared within the main program to service each command concurrently,
under control of an Ada run-time environment.

Chapter I introduces graphical representation of the main program and its
interface with external entities, as shown in Figure 4. In this diagram,
the tasks shown are responsible for servicing a communication link, a
terminal, a work station and an interfacing microprocessor.

With SHARP, various options can be used to present abstracts of the overall
computer program design at a series of abstracted levels. At the highest
level of design abstraction, options are used to represent Ada packages,
which typically encapsulate major components of a large and complex compute:

2Q

program (e.g., the components used to implement the process tasks shown in
Figure 4). A catalog of these packages can be shown using the Ada Package
Catalog (Option A) . Each individual package is represented using an Ada
Package Content Diagram (Option B) . Each package may access other pack-
ages, which may, in turn, access other packages. This can be thought of as
layers of packages, which can be represented using Option B as illustrated
in Item a of Figure 5, where dashed lines indicate Ada generics.

At an intermediate level of design abstraction, options are used to repre-
sent program units encapsulated in a package, as illustrated in Item b of
Figure 5. Specifically, the structure of nested program units within a
program unit declared in the specification of a package can be represented
using the Hierarchy Diagram (Option C). The sequential set of subprogram
calls within this program unit and the concurrent execution of Ada tasks
within it can be represented using the Invocation Diagram (Option D).

At a yet lower level of design abstraction, options can be used to repre-
sent selective detail. As illustrated in Item c of Figure 5, these
abstracts can be thought of as "blow ups" of entities identified in invoca-
tion diagrams. Abstracted detail of data flow between subprograms can be
shown in a Subprogram Data Flow Diagram (Option E). Abstracted detail for
task rendezvous can be shown in a Task Rendezvous Diagram (Option F). The
visibility of type, constant and variable declarations can be shown in a
Data Structure Diagram (Option G).

At the lowest level of abstraction, SHARP Annotated Pseudo Code (Option H)
can be used to show program unit operations, logic and other processing
within program unit bodies, as illustrated in Item d, Figure 5. This
represents the junction of SHARP with traditional design presentations
using PDL. A Data Structure Detail Glossary (Option I) can be used to
represent data structure details not accounted for in a Data Structure
Diagram.

2.2 HIGH LEVEL SHARP ABSTRACTS

2.2.1 Principles of Object-Oriented Design With Ada

Using principles of object-oriented design, a large computer program is
composed with pieces, each associated with one or more objects. An object
accounts for a subset of software requirements. It is implemented using a
unique set of operations and a local state defined in a data structure.
The unique operations and local state are known only to the internals of
the object implementation. Parameters may be passed from one object
implementation to another. However, care must be taken in selecting passed
parameters so as not to introduce interobject dependencies. To the extent
possible, passed parameters should not include variables and flags used in
the formulation of the local state and operations unique to the object
implementation. In this way, undesirable coupling between object implemen-
tations can be avoided.

Requirements are assigned to objects so as to make their implementation
independent and self sufficient, and in a sense, mimic real world objects,
such as alarm clocks and telephones. Such real world objects make

30

/ / (

/ /
P1

p?

V P4

P2

PA

Layers of Packages

1
1

1 ,
1

__•«•»•.. .
p.f

Main

M
PI

!!

i

(a) LAYERS OF ADA PACKAGES

FIGURE 5. INTERRELATIONSHIP OF PICTORIAL OPTIONS OF ADVANCED SHARP

31

s-
Package

Invocation Diagram

s
h
W

Z^-CD

Hierarchy Diagram

(b) Intermediate Level SHARP Abstracts

FIGURE 5. (CONTINUED)

32

Invocation Diagram

Task Rendezvous Diagram

R
Subprogram Data Flow Diagram

••aaDDD
laODD
WYAk

Data Structure Diagram

(c) Lower Level SHARP Abstracts

FIGURE 5. (CONTINUED)

33

Invocation Diagram

(d) Lowest Level SHARP Abstract

Begin

1
1
1
l
i

End.

Program Unit Operations

FIGURE 5, (CONCLUDED)

34

available to users a small number of basic operations (e.g., set time,
enable and disable alarm, dial number, answer, hang up), while hiding from
users implementation details. Hiding information is good for real world
objects because it prevents interference from other objects (such as dust
or grit in the case of clocks and telephones), and minimizes the number of
places to look when something goes wrong. (One doesn't disassemble the
alarm clock when the telephone fails to ring.)

Object implementations are very much like real world objects. They exist
as relatively independent units, which can be combined together to build
larger object implementations. The combination of objects then becomes a
new object that presents a simple interface in the form of a collection of
operations that can be performed on (or by) that object. The fact that an
object may have to communicate with hundreds of its composite objects in
order to accomplish an operation is completely hidden.

Older languages provide only subprograms and henoc support only proeodur.il
and functional abstraction. However, as Cuttage, Horowitz and Muaser point
out in Current Trends In Programming Methodology, "The nature ol .ilisi r.n-
i ions that may be conveniently achieved Lhrougy the use ol subroutines is
1imi ted".

With Ada, objects can be implemented using packages and tasks. However,
some experts do not recommend extensive use of Ada tasks due to slow
rendezvous execution times and potential difficulties in testing.

Accordingly, Ada packages are important to the implementation of object-
oriented designs. Information hidden within each package limits
dependency relationships between objects. Only parameters declared in
program units, contained within the specification of a package, can be
passed from one package to another.

Designers of large and complex Ada computer programs should choose to use
an object-oriented approach, as opposed to older functional typo design
approaches. As Grady Booch suggests, a large software system should bo
built with layers of abstract ion. 4 He feels that each layer should
account for collections of objects. Furthermore, Booch feels that because
objects may be independent and autonomous, there undoubtedly will bo
several threads of control active simultaneously throughout a system. When
using Ada to implement an object-oriented design, Booch associates objects
with Ada packages and tasks, and suggests that classes of objects should be
associated with packages that export parameters of private or limited
private types. By class of objects, Booch means a set of similar but
unique objects. By restricting exported parameters to private or limited
private, the user of the package has limited use of the passed parameter.
For example, if the parameter is private, the user is excluded from apply-
ing operations on the parameter other than those operations defined within
the package specification. The only exception to this rule is assign-
ments and tests for equality and inequality, which can be made. If the
parameter is limited private, assignments and tests for equality are no
longer automatically available. The use of private and limited private is
relevant to parameters passed between object implementations that may
couple the implementations. Such restrictions apply to passed parameters
used in the formulation of the local state and operations unique to an
object implementation.

This Document Contains

35 Missing Page/s That Are
Unavailable In The
Original Document fa $ •

When used in conjunction with object-oriented designs, some reusable Ada
packages will themselves be object implementations (e.g., I/O device
drivers, signal processing algorithms and database management systems).
Other reusable Ada packages will be used to help construct object
implementations (e.g., mathematical functions and data structure routines).

2.2.3 Ada Package Content Diagram (Option B)

2.2.3a Purpose

An Ada Package Content Diagram provides a pictorial abstract of an Ada
package. Specifically, it is used to represent program units declared
within a package's specification, the existence of data structures, other
packages nested in the package's body, and package's accessed through the
Ada "with" clause.

2.2.3b Description

As described in Chapter I, an Ada package is the program unit that acts as
a container for various Ada entitles, including subprograms, tasks,
except Ions, ntul doc In rations of variables, typos, subtypes, and constants.
It consists of a specification and a body. The specification can be
thought of as defining the contractual rights of a user, specifying
visible entities within the package that the user can reference. Program
units declared in the body of an Ada package are completely hidden from,
and inaccessible to any users outside of the package. Similarly, types,
constants and variables declared within the body of a package are hidden
and inaccessible. Accordingly, packages are used extensively in designs
where information hiding is to be introduced.

The Ada package content diagram represents subprograms and tasks declared
in the package's specification, as shown in Figure 7. The Ada package
content diagram does not represent subprograms and tasks nested with the
bodies of program units visible in a package. Rather, these program units
are represented by intermediate and lower level pictorial options of SHARP,
described in Sections 2.3 and 2.4, respectively.

As also shown in Figure 7, the Ada Package Content Diagram can be used to
represent packages nested directly in the subject package, and to represent
the use of the Ada "with" clause to access other packages. The specifica-
t ion of a packago, or its body, can access out; or more other packages using
the "with" clause. These packages can, in turn, access other packages.
The result can be envisioned as layers 'of packages, as illustrated in
Figure 8. In this figure, generic Ada packages are indicated by dashed
lines.

Layers of packages are discussed in conjunction with object-oriented design
in the example provided in Section 3.3. As described in this section, the
interaction of object implementations can be shown using a SHARP Invocation
Diagram (defined in section 2.3.2) for communicating program units (e.g.,
the visible program units declared in the specification of a package used
to encapsulate an object implementation).

38

FIGURE 7. ADA PACKAGE CONTENT DIAGRAM (OPTION B)

39

PU_P1

P1

PU_P2a PU_P2b

P2

PU_P4

P4

PU_P5
P2

FIGURE 8. LAYERS OF ADA PACKAGES

40

2.3 INTERMEDIATE LEVEL SHARP ABSTRACTS

2.3.1 Hierarchy Diagram (Option C)

2.3.la Purpose

A Hierarchy Diagram represents program units nested in a subject program
unit (i.e., program units that are both declared and implemented). In
addition to representing a subprogram or task declared in the specification
of a package, it can be used, for example, to (1) represent program units
to be nested in tasks declared in the main program, or (2) represent the
nested set of program units used to implement the operational part of the
main program or a package.

2.3.1b Description

A Hierarchy Diagram utilizes pictographs defined by Basic SHARP to represent
program units. Specifically, a square is used to represent a subprogram, a
parallelogram to represent a task, and a small rectangle to indicate a
package "with" clause.

In the Hierarchy Diagram, nested program units are assigned to levels. The
subject program unit is assigned to Level 1. Program units declared within
the subject program unit are assigned to Level 2. In general, a program
unit declared within a program unit at Level n is assigned to Level n+1.

As shown in Figure 9, a straight line is drawn from the body of a program
unit at Level n to the specification of the nested program unit at Level
n+1; and a straight line is drawn from the small rectangle indicating a
package "with" clause to the program unit to which the clause applies.

The name of each program unit can be provided in the program unit's specifi-
cation or body, or adjacent to the program unit. In Figure 9, each program
unit is given the name PU (standing for Program Unit) followed by "under-
score" and a program unit identifier. The identifier consists of the
program unit's level number and unit letter, (e.g., PU_3b indicates unit b
in Level 3). In practice, PU typically can be replaced by a name represen-
tative of the object or function implemented by the program unit (e.g.,
RADAR_TRACKER_2d or FFT_3e).

2.3.2 Invocation Diagram (Option D)

An Invocation Diagram displays the flow of control within a computer
program. Specifically, it represents task activation, task rendezvous,
and calls to subprograms, including subprograms contained in the specifica-
tion of a package. The Invocation Diagram is essential in defining depen-
dency relationships between program units, and therefore, is a useful tool
in reviewing the complexity of such dependencies. Figure 10 provides an
example of an Invocation Diagram associated with the Hierarchy Diagram
shown in Figure 9. The following paragraphs describe the symbols used in
conjunction with pictographs in an Invocation Diagram.

41

^v^TASK

1

^

/ PU 1a/

£ \ /

^^ \^ P3 ^o-PACKAGE 'WITH" CLAUSE

2 t >U 2a/ PU 2b PU 2c

/ \ \ ^-SUBPROGRAM
3 PU_3a PU.3b PU.3C PU 3d

z1 / >v^K
" \ / \ Nj^.

S 4
Ul
_l

PU.4a PU 4b PU 4c /pu_4d/ /PU 4e / /PU4l/

BJ O nj
/ \J3 / "

5 pu JH PU 5b PU 5C £!J_5d

6 PU fa PU 6b
/

PU 6c
\
PU 6U PU 6c PU 61

y P10 / P15

PU 7a PU 7b

FIGURE 9. HIERARCHY DIAGRAM (OPTION C)

42

RENDEZVOUS '
TASK

^ T
-

SUBPROGRAM

PACKAGEO SUBPROGRAM

P5

PU-7» am

P10

p'.i

i±i

PIS

FIGURE 10. INVOCATION DIAGRAM (OPTION D)

A3

An Invocation Diagram utilizes the pictographs defined by SHARP. However,
in contrast with a Hierarchy Diagram, an Invocation Diagram directly
indicates calls to program units contained in package specifications. A
called subprogram or task belonging to a package is represented by a
bounded pictograph, as shown in Item a of Figure 11.

As described in subsequent paragraphs, Invocation Diagrams represent the
calling sequence of program units, recursive processes, and conditional
subprogram calls. In addition to representing calls to program units
declared in packages, Invocation Diagrams also represent other Ada unique
characteristics such as:

• Task rendezvous
• Task activation
• Generic program units

2.3.2a Representing a Sequence of Program Unit Calls

Within an Invocation Diagram, arrows are drawn to the specifications of a
called subprogram from the bodies of the calling units, as shown in Figure
11.

With the exception of program units involved in recursive processes or
loops, if a program unit is called n times during the execution of a
program, the program unit must be shown n times in the Invocation Diagram.

2.3.2b Representing Conditional Subprogram Calls

A call to a subprogram or task depending upon some transient condition
(e.g., a 'select,' 'accept,' 'if or 'case' statement) is pictorially
represented in an Invocation Diagram. Specifically, the existence of the
transient condition is indicated by a tilde placed on the arrow represent-
ing a program unit call, as illustrated in Item b of Figure 11.

2.3.2c Representing Recursive Processes

A program unit which calls itself recursively is represented by a semi-
circular arrow, beginning at the bottom of the pictograph representing the
program unit and ending on its side, as shown in Item a of Figure 12. Two
program units that call each other recursively are flagged by asterisks
placed adjacent to a double arrow, as shown in Item b of Figure 12. More
than two program units involved in a recursive process are flagged by
asterisks adjacent to a "feedback loop,"as shown in Item c of Figure 12.

2.3.2d Representing Task Rendezvous

Task rendezvous is represented by a curved arrow from the body of the
calling task (or from a circle containing "H/W" if a hardware interrupt) to
the specification of the acceptor task, as shown in Figure 13. Details of
task rendezvous are pictorially represented in a Task Rendezvous Diagram,
as described in Section 2.6.

44

(a) Representing a Called Program Unit Belonging to a Package

(b) Representing Conditional Subprogram Cans

FIGURE 11 REPRESENTING CALLS TO SUBPROGRAMS

45

(a) Representing a Single Recursive Program Unit

MAIN

\

ENDING
i

RECURSE-1 DUMMY_3

DUMMY_1 DUMMY_2 RECURSE_2 DUMMY_4

(b) Representing Two Recursive Program Units

FIGURE 12 REPRESENTING RECURSIVE SUBPROGRAM CALLS

46

MAIN

'

RECURSE.1

*v V

' f

RECURSE_2

' f

RECURSE_3

—

(c) Representing Recursive Program Unit Calls with More Than Two Subpi rograms

FIGURE 12 (CONCLUDED)

47

FIGURE 13 REPRESENTING TASK RENDEZVOUS IN

AN INVOCATION DIAGRAM

48

2.3.2.e Pictograph for a Generic Subprogram

A generic subprogram is represented by a square with a dashed line used to
establish the narrow part representing the subprogram's specification, as
shown in Figure 14.

2.4 LOWER LEVEL SHARP ABSTRACTS

2.4.1 Subprogram Data Flow Diagram (Option E)

2.4.1a Purpose and Background Information

A Subprogram Data Flow Diagram represents data flow between a subject
program unit and a specified caller. As background information, various
diagrams have been used to represent data flow. For example, IBM has
developed HIPO charts (i.e., Hierarchical Input, Processing, and Output),
as illustrated in Item a of Figure 15. The wide arrow into and out of the
center rectangle accounts for inputs and outputs, and the center rectangle
accounts for processing performed on the input to produce the output.

Item b of Figure 15 shows another example of a Data Flow Diagram. Arrows
show the data flow and the circles indicate the type of processing to be
performed on the data.

2.4.1b Description

The Data Flow Diagram of Advanced SHARP pictorially represents data flow
between a subject subprogram and a specified caller, by the modes
established in the subject subprogram's specification. In Ada, the speci-
fication defines the mode of parameter passing, which is one of the
following:

'in' (i.e.
modified)

the value of a parameter is received and not

• 'out' (i.e., the value of a parameter is created and
exported)

• 'in out' (i.e., the value of a parameter is received,
modified and exported).

As an example of a procedure specification, consider the following:

procedure SAMPLE (PAR1
PAR2
PAR3
PAR4
PAR5
PAR6
PAR7

in INTEGER
in FLOAT
in out FLOAT
in out FLOAT
in out INTEGER
out FLOAT
out INTEGER) Is

49

MAIN

REG_1 GENERIC REG_2

FIGURE 14 REPRESENTING GENERIC PROGRAM UNITS

INPUT OUTPUT

(a) HIPO Charts

(b) Data Flow Representation

FIGURE 15. EXAMPLES OF TRADITIONAL DATA FLOW DIAGRAMS

50

Here a procedure named SAMPLE receives input parameters PAR1 and PAR2,
which are not modified; receives input parameters PAR3, PAR4, and PAR5,
which are altered and exported; and exports parameters PAR6 and PAR7, which
have been created. With SHARP, this data flow is pictorially represented
by a calling subprogram above the called subprogram, as shown in Figure 16.

Parameters received (i.e., the in mode) are shown as shaded circles on a
directed line pointing to the called subprogram from the calling program
unit. Parameters to be exported (i.e., the out mode) are shown as shaded
circles on a directed line pointing to the calling program unit. Parameters
received, modified and exported (i.e., the in out mode) are shown as shaded
circles on a directed line pointing to both the calling program unit and
the called subprogram.

2.4.2 Representing a Generic Subprogram in a Data Flow Diagram (Option E)

If the parameter being passed has a generic type, the circle on the
directed line is not shaded, as illustrated in Figure 17. As an example,
consider the procedure that exchanges two elements with a generic type:

generic
type ELEMENT is private
procedure EXCHANGER (FIRST, SECOND: in out ELEMENT);
procedure EXCHANGER (FIRST, SECOND: in out ELEMENT) is
TEMPORARY: ELEMENT
begin
TEMPORARY:-FIRST;
FIRST:-SECOND;
SECOND:-TEMPORARY;

end EXCHANGER;

The specific name of the generic procedure and the definition of type
ELEMENT must be created prior to use of this procedure, which is referred
to as instantiation. We may declare several instances of the generic
program unit, as illustrated by the following:

o procedure INTEGER_EXCHANGE is new EXCHANGER (ELEMENT->INTEGER);

o procedure FLOAT_EXCHANGE is new EXCHANGER (ELEMENT->FLOAT);

If these instantiations were in a calling procedure named CALLER, the
Advanced SHARP Data Flow Diagram would be given as shown in Figure 17.
In addition to making the type of a passed parameter generic, Ada also
permits the range of values permissible for a passed parameter to be
generic for the in and in out modes. (The mode out cannot be used with a
generic parameter.) For example, consider the following generic procedure:

generic
ROW : in INTEGER:- 24;
COLUMNS: in INTEGER:- 80;

procedure MATRIX Is
o
o

o
end MATRIX;

51

Procedure CALLER

n

V V

PAR1 1

PAR2

"Out" Mode

PAR3

PAR4 V "In Out" Mode

PAR5

PAR6

PAR7

"In" Mode

Procedure SAMPLE

FIGURE 16. SUBPROGRAM DATA FLOW DIAGRAM (OPTION F)

52

Procedure CALLER

Procedure EXCHANGER

FIGURE 17. GENERIC PROCEDURE "EXCHANGER'

53

It can have several instances, such as

o procedure SMALL_MATRIX is new MATRIX (R0WS=>5, COLUMNS->10);

o procedure LARGE_MATRIX is new MATRIX (R0WS->130, COLUMNS=>230);

If these instantiations were in the calling procedure blATRIX_CALL, the
Advanced SHARP Data Flow Diagram would be given as shown in Figure 18.

2.4.3 Task Rendezvous Diagram (Option F)

2.4.3a Purpose

The complexities of inter-task relationships may become so intricate that
software quickly becomes difficult to understand and costly to maintain.
Task Rendezvous Diagrams provide insight into such complicated task
rendezvous.

Invocation Diagrams identify calling and acceptor tasks. However, these
diagrams do not represent task entry points and give no information about
the nature of the entry call (conditional, unconditional or time-condi-
tional) or conditions of its acceptance. Task Rendezvous Diagrams supple-
ment Invocation Diagrams by pictorially supplying this information.

2.4.3b Pictographs Used in a Task Rendezvous Diagram

A Task Rendezvous Diagram utilizes the SHARP pictograph for a task, the
parallelogram; a pictorial representation for task entries, a small
parallelogram which overlaps the representation of a task's specification
and body; and a representation of interrupts from hardware, the circle.
These pictographs are shown in Item a of Figure 19.

2.4.3c Representing Task Entry Points

A rendezvous between two tasks is initiated by one task calling an entry
declared in another. As is the case for a procedure, parameters to be
passed can be of the in, out, or in out modes.

If a task has many entry points (i.e., more than three), they may be
represented as one long parallelogram with several lines drawn through it.
In this case, the names of all entry points are shown adjacent to the task,
as illustrated in Item b of Figure 19.

2.4.d Representing Access to Task Entry Points

Task entry calls are shown by three arrows drawn, between the calling task
and the acceptor task. Circles on these arrows represent parameters being
transferred. Like the data flow diagram, each of the arrows identifies
parameters which are either in, out, or In out. The nature of the para-
meters may be derived from the direction of the arrowhead(s), as explained
in Paragraph 2.4.1b.

Item a of Figure 20 illustrates the following task:

54

Procedure MATRIX_CALL

() ROWS

() COLUMNS

Procedure MATRIX

FIGURE 18. GENERIC PROCEDURE'MATRIX

55

(a) PICTOGRAPHSUSED IN A TASK RENDEZVOUS DIAGRAM

READ_POWER
READ_PRESSURE
READ_TEMP
LOG_DATA

(b) REPRESENTING TASK ENTRY POINTS

FIGURE 19. TASK RENDEZVOUS DIAGRAM

56

CHANGE
HEIGHT
NEW POSITION

READ_NEW_,ALTITUDE

(a) Representing Access to Task Entry Points (all modes)

READING
STATE

POST_ALARM
STOP

(b) Representing Access to Task Entry Points (subset of modes)

FIGURE 20. RENDEZVOUS ENTRY POINTS

57

task ALTITUDE_CORRECT is

entry READ_NEW_ALTITUDE (CHANGE: in REAL;

HEIGHT: in out REAL;

NEW_POSITION : out DIMENSION);

end ALTITUDE CORRECTION;

A task entry which does not have all three parameter modes may be pictori-
ally represented with only one or two arrows. A task entry with no parame-
ters may be represented by a straight line connecting it and the calling
task. A task entry with only the in and out mode is shown in Item b of
Figure 20 and the following example:

task ALARM is
entry POST_ALARM (READING:

STATE :
entry STOP;

end ALARM;

in SENSOR_READINGS;
out STATUS);

Thus far, we have been discussing unconditional entry calls; that is,
patient caller tasks which will wait indefinitely for a rendezvous. With
SHARP, we can also represent conditional and time-conditional task entry
calls. A conditional entry call occurs when the calling task requests a
rendezvous, receives no immediate response from the acceptor task and,
therefore, takes an alternative action. A conditional task entry call is
represented by a tilde placed on the appropriate arrow connecting the
calling and acceptor tasks. Item a of Figure 21 illustrates the condi-
tional call for the following example:

task body ALERTER is

select
ALARM.POST_ALARM (...);

else
. . . - - some alternative action

end select;

end ALERTER;

A time-conditional call occurs when the caller task requests a rendezvous
and waits T units of time for the rendezvous to occur; if there is no
response, alternative action is taken. The time-conditional call is
pictorially represented like the conditional call, with a 'T' adjacent to
the tilde. Item b of Figure 21 illustrates the time-conditional call in the
following example:

58

POST_J\LARM
STOP

(a) Representing a Conditional Task Entry Call

POST_AlARM
STOP

(b) Representing a Time Conditional Task Entry Call

FIGURE 21. CONDITIONAL TASK ENTRY CALLS

59

task body ALERTER Is

select

ALARM.POST_ALARM (...);

or delay T;

end select;

end ALERTER;

2.4.3e Representing Acceptance of a Task Call

Like the caller task, the acceptor task may have conditions associated with
a rendezvous. When this is the case, the entry shall be pictorially
represented by a tilde inside the entry representation (within the task's
body). Item a of Figure 22, and the following example, illustrate this
situation:

task body ALARM is

select
when X ->

accept POST_ALARM (...) do

end;
or

when Y =>
accept STOP do

end;
end select;

end ALARM;

Also, like the caller task, the acceptor task may be time-conditioned. In
this case, affected entries shall be pictorially represented by a 'T' in-
side the entry representation (within the task's body). Item b of Figure
22 and the following example illustrate this case.

60

POST^ALARM

STOP

(a) Representing Conditional Task Acceptance

(b) Representing Time Conditional Task Acceptance

FIGURE 22. CONDITIONAL TASK ACCEPTANCE

61

task body ALARM is

select
accept POST_ALARM (...) do

end;
or

accept STOP do

end;
or

delay T; -- timeout
end select;

end ALARM;

In addition to the above two cases, acceptances of entry calls may be in
fixed order (specified) or in time order (first come, first serve).
Entries accepted in fixed order are represented by numbers within the
affected entry points where '1' indicates first, as illustrated in Item a
of Figure 23 and the following example:

task body ALARM is

accept POST_ALARM (...);

accept STOP;

end ALARM;

Acceptance on a first arrival basis is represented by a line connecting the
affected entry points, as illustrated in Item b of Figure 23, and the
following example:

task body ALARM is

select
accept POST_ALARM (...) do

end;
or

accept STOP do

end;
end select;

end ALARM;

62

POST_ALARM
STOP

(a) Representing Acceptance on a Fixed Order Basis

POST_^LAHM
STOP

(b) Representing Acceptance on a First Arrival Basis

FIGURE 23. ORDER OF ENTRY CALL ACCEPTANCE

63

2.4.4 Data Structure Diagram (Option G)

2.4.4a Purpose

Data Structure Diagrams pictorially present an abstracted representation of
type, constant and variable declarations within a package, and their
visibility. These diagrams are a useful tool to a designer when trying to
utilize the mechanism of information hiding to control dependency relation-
ships between program units (e.g., for software maintainability and versa-
tility) or to encapsulate security-critical software.

Several degrees of information hiding may be achieved by varying the use of
package specifications and bodies, and through the use of private and
limited private types. The Data Structure Diagram provides a pictorial
representation which clearly illustrates visible, hidden, and private
declarations within a package.

A Data Structure Diagram also distinguishes between discrete types (i.e.,
numbers and characters) from structured types (i.e., arrays and records);
and represents discriminate types, access types and task types.

As shown in Figure 24, declarations of types, constants and variables are
represented as follows:

• Upright narrow geometric entities for type declarations

• Right-slanted geometric entities for constant declarations

• Left-slanted geometric entities for variable declarations

2.4.4b Representing Items Declared in the Package Specification

Items may be declared and decomposed in the specification of a package.
These items are therefore visible and available to the user. The user may
access visible entities, utilizing either dot notation or the Ada 'use'
clause. Pictorially, visible declarations are represented as unshaded ver-
sions of the geometric entities used to represent types, constants and
variables. A number placed directly above each entity, is associated with
a declaration name, as illustrated in Figures 24.

2.4.4c Representing Items Declared Private or Limited Private

Items can be declared private or limited private in the visible part of the
package specification and refined in the private part. This restricts the
use of such items. Specifically, if an item is private, the user can only
apply to it operations defined within the package specification, and
assignments and tests for equality. If an item is limited private, assign-
ments and tests for equality are no longer automatically available.
Pictorially, such declarations are represented by partially shaded geomet-
ric figures, as illustrated in Figure 25.

64

TYPE DECLARATIONS

1. AXIS-PAIRS
2. PRIORITY

BUFFERING
ALERT

NATURAL

DEGREES

CONSTANT DECLARATIONS

1. MAX

2. MIN
3. PROB_IN_POWER
4. PROB_OUT_POWER

5. PROB_IN_PRESSURE
6. PROB_OUT_PRESSURE

7. PROB_IN_TEMP

8. PROB_OUT_TEMP

9. ANGLE_1

10. ANGLE_2

11. POWER_VALUE

VARIABLE DECLARATIONS

1. ENVSIM

2. COUNTER
3. CURRENT_AXES
4. NEXT_AXES

5. RANDOM_NUM
6 DELTA_POWER
7 DELTA_PRESSURE

8 UPPER_POWER
9 UPPER_PRESSURE

10 LOWER_POWER
11 LOWER_PRESSURE

12 UPPER_TEMP

13 LOWER_TEMP

14. CURRENT_STATE

15. CURRENT_VALUE

5AMPLE-P10

^ PU_A_(P10) PU_B_(P10) PU_C_(P10) PU_D_(P10)

1 2 3 4 5 6

DDDDDD
1 2 3 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

TYPE/SUBTYPE
DECLARATIONS

CONSTANT
DECLARATIONS

VARIABLE
DECLARATIONS

FIGURE 24. VISIBLE DECLARATIONS IN A PACKAGE SPECIFICATION

65

SAMPLE_P10

q
PU-A_|PtO) PU_B-[P'OI PU-C-IPIOI PU_D_lPlO> \

l 2 1 4 5 6 7 8

aaaaaoaa
l 23456789 10

TYPE SUBTYPE
DECLARATIONS

CONSTANT
DECLARATIONS

VARIABLE
DECLARATIONS

FIGURE 25 • VISIBLE AND PRIVATE DECLARATIONS IN A PACKAGE SPECIFICATION

66

2.4.4d Representing Items Declared in the Package Body

Entities declared within the body of a package are inaccessible to program
units external to the package. Such hidden declarations are represented by
shaded geometric figures, as shown in Figures 26.

At design reviews or when teaching Ada, we may want to select other options
for showing the visibility of declared entities. For example,

• Magnification of both the body and specification of a
package can be used to show data structure detail of both
hidden and visible entities declared directly in the package
(i.e., not under any other program unit), as illustrated in
Figures 27.

• Magnification of a package body and the bodies of program
units within the package, to show all items declared within
a package body (both directly and under a program unit), as
illustrated in Figures 28.

• A combination of the previous options to show the visibility
of all visible and hidden items declared both in the package
directly and within all program units contained within the
package, as shown in Figures 29.

2.4.5 Representation of Types

2.4.5a Representing Discrete Types

A discrete type, or scalar type, defines a set of values that have no
components. They include integer, real and enumeration types. As shown in
Item a of Figure 30, an integer type is represented by an upright narrow
rectangle with the letter "I" underneath it; a real type with the letters
"RL"; and an enumeration type with the letters "EN".

2.4.5b Representing an Array type

An array is a collection of components, with each component of the same
type. An array type is represented by an upright narrow rectangle with the
letters "AR" underneath it, as illustrated in Item b of Figure 30.

2.4.5c Representing a Record Type

A record is also a collection of components. However, records differ from
arrays in that not all components must be of the same type. Also, the
selection of a record component is always static and determinable at the
compile time, whereas an array component can be made dynamically at run
time (by evaluating an expression denoting an index value). A record type
is represented by an upright narrow rectangle with the letter "RC" under-
neath it, as illustrated in Item b of Figure 30.

67

SAMPLE-P10

PU^A_,PlO) PU_B-(P10> PU_C-(P10) PU_D_(P10|

TVPE SUBTYPE
DECLARATIONS

CONSTANT
DECLARATIONS

VARIABLE
DECLARATIONS

FIGURE 26- NON-VISIBLE DECLARATIONS IN A PACKAGE BODY

68

12 3 4

12 3 4 567 89

ill
aaaaoaBBi
12 3 4 5 6 7 8 ? io H 12

TYPE SUBTYPE
DECLARATIONS

CONSTANT
DECLARATIONS

VARIABLE
DECLARATIONS

FIGURE 27. REPRESENTING VISIBLE DECLARATIONS IN A PACKAGE SPECIFICATION
IN CONJUNCTION WITH NON-VISIBLE DECLARATIONS IN A PACKAGE BODY

SAMPLE-P10

PU-A_(PiOI PU-B-lPiOl PU_C_(PI0> Pu_O_(Pl0)

3 4 5 6

1111
9 '0 11

///
II '2 13 u 15

TYPE SUBTYPE
DECLARATIONS

CONSTANT
DECLARATIONS

MRIA61I
n(*;LAHA1K »N .

FIGURE 28. REPRESENTING NON-VISIBLE DECLARATIONS IN A PACKAGE BODY AND THE
BODY OF A PROCEDURE CONTAINED WITHIN THE PACKAGE

69

12 3 4 5 6

1234567 8 9 10 11

iiSIl
mm

l 2 3 4 5 6 7 9 9 10 11 12 13 14 '5

TYPE SUBTYPE
DECLARATIONS

CONSTANT
DECLARATIONS

VARIABLE
DECLARATIONS

FIGURE 29. REPRESENTING ALL VISIBLE AND NON-VISIBLE DECLARATIONS WITHIN A PACKAGE

70

TYPES/
SUBTYPES

CONSTANTS

VARIABLES

(a) REPRESENTING AN INTEGER TYPE, REALTYPE AND ENUMERATION TYPE

TYPES/
SUBTYPES

CONSTANTS

1 2 3 4 5 6 7 8

I AR RC D AC I T T

123456789

onanannaa
1 2345678 9 10

VARIABLES

(b) REPRESENTING AN ARRAY TYPE, RECORD TYPE, DISCRIMINATED TYPE,
ACCESS TYPE AND TASK TYPE

FIGURE 30. REPRESENTING TYPES

71

2.4.5d Representing a Discriminated Type

Ada also facilitates a discriminated types, where variables of this typo
are called "discriminants." A record with discriminants may have (a)
variant parts in which certain components are present only for certain
values of the discriminant, and (b) array components whose bounds are fixed
by the values of discriminants. Conceptually, a discriminated type can be
thought of as introducing a set of record values, each value in the set
having a different structure. A discriminated type is represented by an
upright narrow rectangle with the letter "D" underneath it, as illustrated
in Item b of Figure 30.

2.4.5e Representing an Access type

As an alternative to statically allocated data, Ada provides a mechanism
for allocating variables dynamically during program execution. Since the
storage locations used for dynamic variables are not determined in advance,
they cannot be referenced by a name but must instead be referenced indir-
ectly via a so-called access type. Unknown amounts of data can be handled
by dynamically allocating storage to each new datum when it is received.
In this way, complex data structures can be built with components dynami-
cally allocated. An access type is represented by an upright narrow
rectangle with the letters "AC" underneath it, as illustrated in Item b of
Figure 30.

2.4.5f Representing a Task Type

A task type is formed when the keyword task is followed by the keyword
type. Elaboration of the corresponding task body defines what a task of
that type does. It does not cause a task to be activated. Rather, tasks
are activated separately by declaring variables of the task type. A task
type is represented by an upright narrow rectangle with the letter "T"
underneath it, as illustrated in Item b of Figure 30.

2.4.5g Representing the Type of a Variable and Constant

The type of a variable or constant can be represented as follows:

o If the type is predefined, then the first letter of the type
(e.g., I for INTEGER) is placed under the geometric repre-
sentation of the variable or constant.

o If the type is defined, the letter "T" followed by the type
glossary number is placed under the geometric representation
of the variable or constant.

For example, in Figure 31, variables number 1 and 3 are of the predefined
type INTEGER, variables number 2 and 4 are of the predefined type BOOLEAN,
variable 5 is of defined type Tl, variables 6 and 8 are of defined type T2,
and so forth.

2.5 LOWEST LEVEL SHARP ABSTRACTS

At a low level of abstraction, SHARP junctions with traditional design
representation using Ada-based pseudo code and a glossary of data structure
detail. This is the lowest level of design abstraction with SHARP.

72

TYPES/SUBTYPES

CONSTANTS

VARIABLES

12 3 4 5

00010
RC I EN I I

12 3 4

aooa
I I B T5

1 2345 6 789 10 11

wwwwwwwmw
I B I B T1 T2 T3 T2 T4 T5 T3

FIGURE 31. REPRESENTING THE TYPE OF A VARIABLE AND CONSTANT

73

2.5.1 Annotated Ada-Based Pseudo Code (Option H)

SHARP utilizes annotated pseudo code to represent the design of program
unit bodies. SHARP criteria include general standards for the pseudo code
and its annotation. Standards of the criteria require that the name of the
subject program unit is clearly shown, and the beginning and end of the
pseudo code for the subject program unit is bracketed as follows:

Begin Procedure SAMPLE_1

o
o
o

End Procedure SAMPLE 1

In addition, the standards require the pseudo code to account for the
following:

Logic and decisions
Algorithms
Program unit calls and I/O
Generic instantiation
Exception handling

The standards require that the design associated with these factors must be
presented using certain Ada key words and annotation, as described in the
following paragraphs.

2.5.1a Logic and Decisions

SHARP criteria states that Ada control statements must be used to represent
the design for logic and decisions made in the body of a program unit. For
example, the if and case statements are used to provide conditional control
(i.e., the selection of one of a number of alternate actions).

The if statement selects a course of action depending upon the truth value
of one or more conditions. In Ada, there are three basic forms of the if
statement:

• if-then
• if-then-else
• if-then-elsif

In each case, the if statement is terminated with an end if clause. SHARP
pseudo code annotates the if statements with brackets bounding the begin-
ning and end of the statement, as illustrated in Item a of Figure 32.

The case statement provides for the selection one of a set of multiple
alternative actions, as a function of the value of an expression. Only one
of the alternative actions is taken. SHARP pseudo code annotates the case
statement with brackets as illustrated in Item b of Figure 32.

74

Begin Procedure SAMPLE_2A_

if Y>0 then

end If

if XX) then

else

end if

if A-B then

elsif A-C then

else

end if

End Procedure SAMPLE A

(a) USE OF "IF" STATEMENTS

FIGURE 32. ANNOTATED PSEUDO CODE

75

Begin Procedure SAMPLE_2B_

case TEST is

when PASS Call Procedure CONTINUE

when FAIL Call Procedure RESTART

end case n
End Procedure SAMPLE 2B

(b) USE OF THE "CASE" STATEMENT

Begin Procedure SAMPLE_2C_

loop

end loop_

loop

loop

end loop_

end loop

End Procedure SAMPLE 2c

(c) USE OF THE "LOOP" STATEMENT

FIGURE 32. (CONTINUED)

76

Begin Procedure SAMPLE _2D_

for i-1,2, .. N

end loop

while B>0 loop

end loop

[

End Procedure SAMPLE 2D

(d) USE OF THE "FOR" AND "WHILE" STATEMENTS

FIGURE 32. (CONCLUDED)

77

Repetitive execution of action is accomplished in Ada using the loop state-
ment. The basic loop is accomplished using a loop and end loop statement.
To leave a loop, an exit statement is used. SHARP pseudo code annotates
the loop statement with brackets, as illustrated in Item c of Figure 32.

To repeat a loop for a specific number of times, the basic loop can be
preceeded by a for iteration clause. Also, another form of iteration can
be accomplished with the while statement, whereby a sequence of statements
is repeated as long as some condition is true. SHARP pseudo code annotates
the for and while statements with brackets, as illustrated in Item d of
Figure 32.

2 . 5.lb Algorithms

SHARP criteria state that all mathematical algorithms to be implemented in
the body of a program unit must be clearly shown in the pseudo code. The
criteria makes no constraints on how the formulation is presented. There-
fore, either the notation of mathematics or a programming language is
applicable.

2.5.1c Program Unit Call

SHARP criteria state all program unit calls made in the body of a program
unit must be shown by the pseudo-code, but does not require specification
of parameters passed in conjunction with the call. The parameter passing
is shown by SHARP Data Flow Diagrams (for subprograms) and by SHARP Task
Rendezvous Diagrams. As illustrated in Figure 33, SHARP does require that
annotation be provided to identify the package a program unit is to be
implemented in, if it is to be other than the package (or task) of the
subject object implementation.

Begin Procedure SAMPLE_3

CALL Procedure EX_1
CALL Procedure C0MM0N_R1
Call Procedure EX 2

 Package Pi

Call Entry A in Task BUFFER
Call Entry B in Task BUFFER

End Procedure SAMPLE 3

FIGURE 33. SHARP PSEUDO CODE FOR REPRESENTING
PROGRAM UNIT CALLS

78

2.5.Id Generic Instantiation

The specific parameters passed between object implementations is represen-
ted by SHARP Data Flow Diagrams. This diagram represents parameters being
passed as shaded circles on directed lines.

If the program unit being called is generic, the line introduced to parti-
tion a pictograph into a narrow part (i.e., to represent the program unit's
specification) and a wide part (i.e., to represent the program unit's body)
is dashed, as illustrated in Figure 34. In Ada, the specific name of the
generic procedure and the definition of unspecified types must be created
prior to calling a generic program unit. This is referred to as
instantiation.

In addition to making the type of a passed parameter generic, Ada also per-
mits the range of values permissible for a passed parameter to be generic
for the in and in out modes of parameter passing. (The mode out cannot be
used with a generic parameter.) Several instances of such values can be
established in generic instantiations.

SHARP criteria state that generic instantiation must be represented in the
SHARP pseudo code for program unit bodies. As shown in Figure 35, this
pseudo code is bracketed by dashed lines.

2.5.1e Input/Output

The high level input/output (I/O) facilities provided in Ada are not, as in
other languages, supplied in the form of additional language constructs.
Rather I/O is accomplished using the predefined packages SEQUENTIALIO,
DIRECT_IO and TEXT_IO. Their package specifications give a precise des-
cription of the I/O facilities provided. TEXT_IO is used to read in data
generated by humans and to write out data to be read by humans.

SEQUENTIAL_IO and DIRECT_IO are used for data written and read by a
computer and not a human (e.g., to store data on disc or magnetic tape).
They are generic Ada packages. For example, to declare files for elements
of a given type, an instance of the package must be declared and the
required element type must be specified as an actual generic parameter.
Such generic instantiation is represented using annotated pseudo code, as
we have already explained. Generic instantiation for this package is
explained in Chapter 15 of An Introduction to Ada. *•

Unlike SEQUENTIAL_IO and DIRECT_IO, TEXT_IO is not generic but is an
ordinary Ada package. It is accessed using the Ada 'with' clause.

In SHARP pseudo code, calls to program units contained in package TEXT_IO
is presented in the manner described in Paragraph 2.5.1c. Instantiation of
program units contained in packages SEQUENTIAL_IO and DIRECT_IO is
presented in the manner described in Paragraph 2.5.Id.

79

COMMON UNITS

FIGURE 34. SHARP REPRESENTATION OF A GENERIC PROGRAM UNIT

3egin Procedure SAMPLE_4

Call Generic Procedure COMMON_R2
where type ELEMENT is INTECER

type SUPPLEMENT is INTEGER
ROW > 5
COLUMN > 10

End Procedure SAMPLE 4

COMMONJJNITSJ-

FIGURE 35. SHARP REPRESENTATION OF A GENERIC INSTANTIATION

80

2.5.If Exception Handling

Ada provides an explicit mechanism for detecting and responding to an
anomaly. The anomaly, for example, could be associated with erroneous
input data or overflow conditions. SHARP criteria require that the design
of a program unit's body must specify the detection of the anomaly and the
course of action taken after the occurrence of the anomaly.

In Ada, the detection of the anomaly causes normal program execution to be
suspended and control transferred to an exception handler. Once the
exception handler has completed its processing, control transfers to code
following the exception handler code.

Figure 36 provides an example of annotated SHARP pseudo code used to
specify the detection of an anomaly and action taken in an exception
handler. SHARP criteria requires that (a) the pseudo code for the anomaly
detection must be introduced by the key words 'raise exception' and must be
bracketed as shown in the figure; (b) the pseudo code for the action taken
upon occurrence of the anomaly must be introduced by the key words
'exception handler,' must be concluded with the key word 'end,' and must be
bracketed as shown in the figure, and (c) an arrow must point from the
bracket enclosing pseudo code for the anomaly detection to the bracket
enclosing pseudo code for the exception handler.

2.5.lg Example

Figure 37 provides an example of annotated SHARP pseudo code.

2.5.2 Data Structure Detail Glossary (Option I)

A SHARP data structure diagram presents an abstracted representation of
types (subtypes), constants and variables. It establishes the name and
visibility of each. It indicates the type of each variable, including
arrays, records, discriminants and dynamic variables (which are designated
as access types). It represents types and variables declared as private.

To complete the description of a data structure, a glossary can be used to
designate additional detail, including the following:

• The use of a variable and constant

• The range of values the design designates as
permissible in'a type and subtype

• The components associated with a record type

• The type of designated variables associated with
an access type.

3 APPLICATION OF THE SHARP PICTORIAL ABSTRACTS

This section presents examples of general applications of the various
pictorial options of SHARP. Examples of specific applications are provided
in Chapters III and IV.

81

Begin Procedure SAMPLE_5_

Call Procedure SENSOR
--it returns the parameter SENSOR_VALUE

raise exception

if SENSOR_VALUE>20 millivolts
in SENSOR VALUE<10 millivolts

exception handler

when SENSOR_VALUE<10
Call Procedure SOUND_ALARM

when SENS0R_VALUE>10
Call Procedure RESTART

end

End Procedure SAMPLE 5

FIGURE 36. SHARP ANNOTATED PSEUDO CODE FOR RAISING
AND HANDLING EXCEPTIONS

82

Begin Procedure SOFT_DEV_ESTIMATE

#SS - 0

for 0 - 1, 2, ... 0(p)

<*DATA - # TYPES (p,o) + #CONSTS(p,o) + #VARS(p,o)

ePCALL - #SUBCALL(p.o) + #TASKS(p,o)

#PBOD - #INSPECT_COUNT(p,o)

DSI(p.o) - »DATA + wPCALL + *PBOD

#SS - #SS + DSI(p.o)

end loop

pnd loop _.

if LANGUAGE - FORTRAN then

*SS - #SS*FORTRAN_CALIBRATE

else if LANGUAGE - JOVIAL Chen

*SS - *SS*JOVIAL_CALIBRATE _

else if LANGUAGE_ASSEMBLY chen

#SS - #SS*ASSEMBLY_CALIBRATE

else

#SS - #SS*ADA_CALIBRATE

end if

raise excepcion

if »SS= 2000

(b

FIGURE 37. EXAMPLE OF ANNOTATED PSEUOO CODE

83

case COCOM_MODE is

when ORGANIC ->

0
K - 2.U

E - 1.05

when SEMI_DETACHED ->

K - 3.0

E - 1.12

when EMBEDDED ->

K - 3.6

E - 1.2

1 case

Call Procedure COST ESTIMATE

Call Generic Procedure SCHEDULE_ESTIMATE

where

KGEN - K

EGEN - E

excepcion handler

Call Procedure MODULE_ESTIMATE

end excepcion handler __^__^___

Package P10

End Procedure SOFT DEV ESTIMATE

FIGURE 37. (CONCLUDED)

84

The examples are given in the context of a designer presenting his design
requirements at a design review. The examples illustrate the versatility
of the SHARP notation. The notation is shown to effectively represent
extremes in combinations of program units that a designer may choose in the
implementation of a large Ada computer program, regardless of whether an
object-oriented or more traditional design approach is being taken.

3.1 EXAMPLE 1 - SOFTWARE ABSTRACTION WITH PROCESSES

As discussed in Section 3.1 of Chapter I, processes consist of chains of
software modules introduced to (a) satisfy user commands and communication
interface requests and (b) perform processing automatically initiated on a
periodic or some other basis. Processes execute concurrently in the time
slice sense.

With languages such as FORTRAN, processes execute concurrently under
operating system control. With Ada, a designer can choose to implement
each process within the body of an Ada task, declared in the main program.

Figure 38 provides an example of representing the tasks nested in the main
program. As discussed in Chapter I, the diagram also indicates Ada
packages the designer wants the main program to access, through the Ada
"with" clause; and subprograms the designer wants nested in the operation-
al part of procedure MAIN.

This high level diagram can be used by a designer to represent interfaces
between the large Ada computer program and the "outside world." As a high
level diagram, it provides a manager with a conceptual view of the func-
tions of the large Ada computer program.

3.2 EXAMPLE 2 - SOFTWARE ABSTRACTION WITH PROCESS LEVELS

Since the requirements of a process are often complex, a designer typically
will use additional abstraction in the development and presentation of his
design. For example, a relatively small and easily comprehended portion
can be implemented at one level, with the rest of process requirements
implemented at other levels. At each other level, the technique is repeat-
ed, with abstraction of variables and manipulation of the data. The
designer may choose to abstract the design using layers of packages, which
is discussed in Section 3.3 of this chapter. The problem may lend itself
to abstraction using Ada tasks, which is discussed in Section 3.4 of this
chapter. Alternatively, the designer may choose to implement the design
using a controlling structure of subprograms and tasks assigned to levels,
which access packages using the Ada "with" clause.

With this approach, the body of each task, activated in procedure MAIN to
account for a process, is abstracted by constraining the amount of detail
within it to an easily understood amount. Excluded detail can be passed to
the bodies of called program units. The called program units may be
contained in an Ada package, which is made available through the use of the
Ada "with" clause.

85

5
<
cr
a
o
cc
a.
z
<
s
UJ
I
(-
o
z
p
z
UJ
c/3
UJ
<r
a
UJ
cr

00
CO

UJ
cr

a

86

The deferred bodies of the called program units can be designed subject to
the same constraints that applied in the design of the task's body.
Therefore, these bodies are also constrained to an easily understood amount
of detail, with lower detail moved again to called program units.

To illustrate the physical layout of Ada source code prepared in accordance
with such an abstracted design, consider the sample computer program shown
in the Appendix B. The main program appears first, followed by a set of
program unit threads for each process. Implementation of this program would
require thousands of lines of Ada code. The information provided in the
listing in the Attachment requires several pages, even in its "skeleton"
form. As shown in Figure 39, the same information can be provided in SHARP
Hierarchy Diagrams (Option C) on one page. Therefore, this abstract can be
used at design reviews to summarize thousands of lines of implementing
code.

Figure 40 illustrates how the SHARP Invocation Diagram (Option D) can be
used by the designer to show the sequence of calls for the program units
identified in a hierarchy diagram. In addition, the designer can select a
set of other SHARP options to provide Ada abstracts of lower level detail.

For example, Figure 41 illustrates how a designer can use the Subprogram
Data Flow Diagram (Option E) to specify data flow into and out of program
unit PU_A3a of Thread A. As another example, Figure 42 illustrates how a
designer can use Annotated Pseudo Code (Option H) to specify conditions of
procedure calls between Levels 3 and 4 of Thread C, flagged as conditional
by the Invocation Diagram.

The designer might use the Task Rendezvous Diagram (Option F) to show
details of rendezvous between tasks. Examples of these diagrams are
provided in Section 3.4 of this chapter.

The designer also might use the Data Structure Diagram (Option G) to show,
for example, the visibility of types, variables, constants and task types.
Examples of these diagrams are provided in the next section.

3.3 EXAMPLES 3 - SOFTWARE ABSTRACTION WITH ADA PACKAGES

As we suggest in the previous section, a designer may choose to abstract
the design using layers of packages. This approach can be used in conjunc-
tion with object-oriented design to minimize dependency relationships
within a large Ada computer program, a potentially significant problem.

As discussed in Section 2.2 of this chapter, object-oriented design is a
software development method in which a large computer program is composed
with object implementations. Each object implementation consists of a set
of operations unique to it and a local state defined in a data structure.
The implementation of unique operations are known only to the object. The
parameters describing the object and its state may be passed as parameters
to other objects.

87

in
Q
<
UJ
cr
I

<
<
UJ
en
x

<

CM
m

I
3
Q.

05
0.

o
a

_x u
CO
CO

3
a

o

3
3
CL

CD 1
5
5
O
O

N,

a
co
CD

1
3
0.

A
rr
CO

3
CL

-
re

CM
CO ;
3
rx

cc
CO
CD

1
3
a

CO

CO

3
a.

4

0.

CM

1
Q-

V s o

3
CL

1
5
5
O

CO

3
a

CO
0.

X 1
3
0.

0.
CM

<
3
CL

 Ns n
CO

< !
3
a.

co

<
3
CL

u
CO

;>
3
CL

CM

5
1

3
a

cr
<
i-
w
UJ
en

n
CO

>:
3
CL

.o
CM

3
CL

UJ
N
_i <
t-

2

to
0.

co
0.

CM

5

3
Q.

X
3
0-

\

3
a

co

<
a.
a
<
5

*S o *
Ct Q-
< E
Ml X

a<
< .2

CD
co
UJ
DC
3
O
u.

S13A31

88

COMM^A

t
PU_^2a

PU-A3a

PU-P7

' '

PU_Pl5a

PU_A4a

P7

JP15

L
INT

PU_A2b

ri
PU_A3b

PU_A4b.

' I

PU_P8

I I

PU_P15c

PU_^3c

i I

PU. P9

P8

P9

P15

FIGURE 40- SHARP INVOCATION DIAGRAM
(Option D, Example 2)

89

PU-J^a PU_J\3a

PAR1

PAR2

PAR3

PAR4

PAR5

PU_A3a

* *

4 PAR12

PAR 13

PAR 14

PAR 15

PAR 16

PAR17

PU_A4a

PU^A3a

I 1 1 1 , > PAR6

< > PAR7

< > PAR8

< • PAR9

(> PAR10

(1 PAR 11

' ! \ '

PU_P7

D7

PU_A3c

T
PAR 18

PAR 19

PAR20

PAR21

PAR22

* PAR23

PU_jH4b

FIGURE 41, SHARP DATA FLOW DIAGRAM
(Option E . Example 2)

90

procedure PU_A3a
--Pseudo Code in an Operations Diagram

begin -- PU_A3a

if PAR3<T1 then

Call . Procedure PU P7 I Package P7 -L

else if PAR4<T2 then

Call Procedure PU A4a

else if PAR5<T3 then

Call Procedure PU_A4b

else

end if;

end PU A3a;

FIGURE 42. USE OF ANNOTATED PSEUDO CODE (OPTION H. EXAMPLE 2)

91

In Ada, packages are important to the implementation of object-oriented
designs. Information hidden within each package limits dependency rela-
tionships between objects. Only parameters declared in program units,
contained within the specification of a package, can be passed from one
package to another.

A designer can use a set of Ada Package Content Diagrams (Option B) to show
multiple packages, each encapsulating an object implementation. The
multiple packages can be thought of as layers of packages, as illustrated
in Figure 43. In this example, the designer has introduced a procedure in
each package as the interfacing program unit. Each interfacing program
unit communicates with other corresponding interfacing program units in
other packages. In practice, it is desirable to keep the interfaces
between the packages as simple as possible. Parameters passed between
object implementations should not couple the implementations. The data
flow between interfacing procedures can be specified using Subprogram Data
Flow Diagrams (Option E).

Figure 44 illustrates how a designer can use an Invocation Diagram (Option
D) to specify the sequence of calls between the package layers. In this
example, the designer requires that the procedure in PI calls the procedure
in P2, which in turn calls the procedure in P3. The procedure in P3 calls
procedures in P4 and P5. This procedure in P5 recursively calls the
procedure in P2.

Each package _ may be complex within itself, although its interface with
other packages may be kept relatively straightforward. Program units
contained within the body of a package are hidden from the other packages.
As illustrated in Figure 45, the complex inner structure of the package can
be specified using one or more of the SHARP options, in the same manner as
the detailed design was shown for a process thread as discussed in Section
3.2 of this chapter.

3.4 EXAMPLE 4 - SOFTWARE ABSTRACTION WITH ADA TASKS

As also indicated in Section 3.2, abstraction can be accomplished using
tasks in the main program to implement processes. At lower levels, tasks
can also be used (e.g., to monitor multiple sensors). As described
in Buhr's book System Design with Ada \ special purpose tasks termed
"slaves, starters, schedulers, buffers, secretaries, agents, transporters
and pools" can be used in various combinations to facilitate processing
needs.

At the lower levels, abstraction with tasks takes place so that processing
requirements and data structures can be spread among different tasks, all
executing concurrently in an independent manner. In this way, tasks can be
used, to a certain extent, in object-oriented designs in that the local
state of an object implementation can be is defined by variables local to
the task; and operations within the body of the task are unique to the
object implementation.

If a designer decides to extensively use Ada tasks, he can use the Invoca-
tion Diagram (Option D) to show rendezvous or conditions of rendezvous, as
illustrated in Figure 46. The designer can use a Task Rendezvous Diagram

92

PU_P1

P1

PU_P2a PU_P2t>

P2

P3

PU_P3

P3

p.I

P5

PU_P4

P4

PU_P5

P5

P2

FIGURE 43 LAYERS OF ADA PACKAGES
(OptionB, Example 3)

93

PU_P1

P1

PU_P2a "* •"

P2

PU_P3

P3

PU_P4

P4

PU_P5

P5

FIGURE 44. INVOCATION DIAGRAM
(Option D, Example 3)

94

1 2

DD
1 2 3

1 2

4 5

3 4 5 6

/
P(J_P4

P4

PU_P1

P1

PU_P2a

P2

PU_P3

PU_P1

•

1

•

•

I! |l

PU_P2a

VAR1

VAR2

VAR3

VAR4

VAR5

PU-P5

PU_P5

£
PU_P52a

P5

±

X
PU_P52b

^r
PU_P53a

PU_P2b

±
PU_P53b/ /PU_P53c

PU_P54a PU_P54b PU_P54c
PH

P?

FIGURE 45. EXPANDING THE DETAIL SHOWN IN AN INVOCATION
DIAGRAM FOR LAYERED PACKAGES

95

FIGURE 46. INVOCATION DIAGRAM
(Option D, Example 4)

96

(Option F) to specify task entry points, conditions of task acceptance and
parameters passed during rendezvous, as illustrated in Figure 47. As men-
tioned in the case of conditional procedure calls, the designer can show
the logic calls and conditional acceptances using the SHARP Annotated
Pseudo Code (Option H).

As we have indicated, some feel that such use of multiple tasks should be
constrained due to slow rendezvous times and potential complicated
temporal properties. The complex temporal properties may be difficult to
test during computer program development and maintenance.

4 CHAPTER SUMMARY

SHARP establishes a set of pictorial options that can be used to represent
the design for an Ada computer program, whether designed by object-oriented
or traditional methods. As such, SHARP abstracts are effective at design
reviews, and to help specify requirements for a large and complex computer
program in design documentation. SHARP abstracts apply equally well to
all extremes of Ada designs, including design abstraction with layers of
Ada packages, extensive use of Ada tasks, and mixtures of packages, tasks
and subprograms.

The options of SHARP produce various abstracts of an Ada computer program.
The Ada package content diagram presents at a high level an overview of an
Ada package. The hierarchy and invocation diagrams are intermediate level
diagrams that present the overall structure and invocation sequence of
program units nested in a subject program unit (e.g., a procedure declared
in the specification of a package).

Lower level design detail can be specified in rendezvous, subprogram dat.i
flow and data structure diagrams. However, each of these diagrams is at a
substantially higher level than PDL.

At the lowest level, annotated pseudo code can be used to represent the
data structure detail and operational part of the body of a program unit,
and a glossary can be used to define certain data structure detail. At
this lowest level of abstraction, SHARP junctions with traditional design
presentation techniques in a manner similar to PDL.

97

ENTRY 1 ENTRY 2 ENTRY 3

PAR10

PAR8 PAR 11

P^TASfCF

'ENTRY ENTRY
6 7

TASK_G

FIGURE 47. TASK RENDEZVOUS DIAGRAM
(Option F, Example 4)

98

PART TWO: APPLICATION OF SHARP

CHAPTER III

Basic Issues in Object-Oriented Design With Ada

This chapter addresses basic issues in designing an Ada computer program
using principles of decoupling inherent in an object-oriented design. The
issues are raised through example.

With the example, we illustrate the object-oriented design approach and the
inherent effective software maintainability associated with an Ada computer
program that has been designed in an object-oriented manner. Then we
address increasing the execution speed and constraining the use of memory
within the Ada-unique object-oriented design suggested for the example.
Variations on the example demonstrate that whatever the design goals, the
resulting object-oriented design can be effectively represented by
abstracts of SHARP.

This chapter is very basic in nature and is meant for those unfamiliar with
steps needed to develop an Ada-unique object-oriented design.

1 INTRODUCTION

1.1 BACKGROUND

In the past, the cost of software development has been relatively high and
has increased exponentially as a function of the size of a computer
program. These high costs can be attributed to several factors, including
the effect of complex dependency relationships between types, variables and
program units introduced using traditional software design and development
techniques.

As described in Chapter II, complex dependency relationships can be con-
trolled using Ada-unique object-oriented techniques, and in this way
software development costs can be significantly reduced. With Ada, the
object-oriented approach is also critical because of the speed of Ada
compilers. Object implementations within a large and complex Ada computer
program can be encapsulated in loosely coupled Ada packages and tasks,
which the development team can code and test independently. By constrain-
ing their size and stubbing program units interacting with them, the Ada
packages and tasks can be compiled individually and recompiled in a timely
manner during during their development.

Because of the need to control complex dependency relationships and to
adapt to slow Ada compilers, it is anticipated that large Ada computer
programs by necessity will be developed using object-oriented techniques.
In practice, a designer must make several decisions with respect to sub-
division of processing requirements into objects and the implementation of
each object. The extent of decoupling of the implemented objects and the
object selection approach taken are driven by design choice and constraints
associated with such things as memory and execution speed limitations.

99

1.2 CHAPTER SCOPE

In this chapter, variations on an object-oriented design are discussed for
a sample problem. The variations are introduced due to different design
goals. Through example, it is shown that typically we cannot speak of an
unique optimal design. Rather the design is driven to a significant extent
by the designers objectives, be they maintainability, execution speed,
constrained memory or some other goal; the extent and manner in which he
decides to implement the object-oriented design in Ada; and the extent to
which he constrains the interaction between objects to limit dependency
relationships.

Section 2 establishes requirements for a sample problem and describes an
object-oriented design for the sample problem. It provides a second
version of this design, a modification of the original design to increase
execution speed; and also a third version of the design, a modification of
the original design to save on memory used.

2 EXAMPLES OF AN ADA-UNIQUE OBJECT-ORIENTED DESIGN

Let us consider restart/recovery capabilities in a large and complex Ada
computer program. In this program, several application module transactions
execute concurrently.

The computer program is to have the capability to abort a transaction,
restart it from its beginning, or recover the transaction by restarting
from a dynamically established point in the program (e.g., a breakpoint or
checkpoint); all as commanded by an operator from a work station.

A transaction tracking table is to be established to record pertinent
information about the transactions (e.g., transaction type, responsible
operator, console ID, status and breakpoint information). When a trans-
action is recovered, restarted or aborted, the transaction table must be
updated to reflect this event. Also, a counter must be incremented after
each transaction to keep a record of how many times a transaction has been
restarted or recovered.

In Section 2.1, we consider an Ada-unique design for the restart/recovery
software with efficient future maintainability as a goal. In Section 2,.2,
we address variations on the original design introduced due to speed and
memory constraints. Although the sample problem is relatively small, its
design is developed as if it were a large and complex situation, so as to
demonstrate the Ada-unique object-oriented design approach and its
representation with SHARP abstracts.

2.1 ADA-UNIQUE DESIGN CONSIDERATIONS

Developing Ada-unique software in an object-oriented manner is expected to
lower software development costs, as quantified in Chapter VII. More
importantly, this approach is expected to significantly lower software
maintenance costs.

100

The localization of design complexity inherent in an object-oriented design
simplifies software maintenance. In the past, global parameters and
routines were shared among many program units. If during maintenance, any
one of the global parameters or routines had to be changed in conjunction
with a program update or improvement, the change often adversely affected
several parts of the computer program. Seemingly innocent changes typical-
ly caused serious problems. However, by localizing design complexity in an
object-oriented manner, the effect of maintenance changes are trapped
within the implementation of an object. As Booch observes, "The benefit of
this facility (minimizing dependencies) should be clear: not only does
this enforce one's abstraction and, hence, help manage the complexity of
the problem space, but by localizing the design decisions made about as
object, we reduce the scope of change upon the system.1

This phenomena is very important. As history has shown, software
maintenance costs associated with traditional designs have been very
expensive, typically costing more than the original development costs. In
some cases, maintenance over ten years or more has cost as much as 50 times
more than the original software development costs.

2.1.1 Establishing an Ada-Unique Design with SHARP

To establish a SHARP representation of an Ada-unique design based upon
principles of object-oriented design, a designer can consider the following
factors:

a. SHARP pictographs are introduced to represent Ada tasks
declared in the main program to establish concurrently
executing processes.

b. High level SHARP abstracts are introduced to represent Ada
packages and tasks that encapsulate the implementation of
objects. The objects account for all software requirements
assigned to each of the process tasks established in Step a.

c. Intermediate level SHARP abstracts are introduced to repre-
sent the structure of program units used to implement the
internal complexities of an object implementation (i.e., the
bodies of object tasks and program units visible in object
packages). This structure is shown by SHARP Hierarchy and
Invocation Diagrams.

d. Low level SHARP abstracts are introduced to represent
selective detail. These abstracts can be thought of as
"blow ups" of entities identified in SHARP Invocation
Diagrams (e.g., data flow between program units, data
structures and task rendezvous).

e. At the lowest level of design representation, annotated
pseudo code is used to represent certain detail in the
bodies of program units. This detail accounts for
algorithms, logic, Ada exceptions, and Ada generic
instantiation.

101

Item a. is discussed in Section 3.2 of Chapter 1. Item b. is discussed in
Section 2 of Chapter IV. Items c. through e. are discussed in Section 2 of
Chapter II. The remainder of this section provides an example of an
Ada-unique design for the hypothetical restart/recovery process. Chapter
IV describes the use of SHARP in conjunction with object-oriented design in
more detail and presents a more complex example.

2.1.2 Example of an Ada Design for High Maintainability

In order to produce a highly maintainable object-oriented design, a
designer decides to distribute the requirements for the restart/recovery
process among three highly independent objects. He chooses to implement
the objects using an Ada task and two Ada packages.

The first object is to provide an interface with an operator. An Ada task
is chosen to implement this object, since it can rendezvous with the
operator's work station in order to receive operator commands and notify
the operator of software status.

The second object is to facilitate an abort of a transaction and establish
a record of this event. An Ada package is chosen to encapsulate program
units that implement this object.

The third object is to facilitate restart of a transaction and establish a
record of this event. An Ada package is chosen to encapsulate program
units that implement this object.

2.1.2a High Level Design Representation

The Ada task and packages chosen by the designer are shown in Figure 48.
Task AP_NOTIFY interacts with an operator's work station. An operator can
(a) abort execution of an application program, which is implemented by
Procedure ABORT_TRANS in Package P2; (b) restart an application program
from a breakpoint, which is implemented by Procedure START_BKPT in Package
P3; or (c) restart an application program from its beginning, which is
implemented by Procedure START_BEG in Package P3.

As shown in Figure 48, the object implementations can be considered as two
layers of abstraction. Layer 1 consists of Task AP_NOTIFY. Layer 2
consists of Package P2, named ABORT_HANDLER, and Package P3, named
RECOVERY_HANDLER. The interaction of these object implementations is shown
by the SHARP Invocation Diagram is Figure 49.

Figures 48 and 49 are high level SHARP abstracts representing the designer's
Ada-unique object-oriented design. Hidden complexities of object implemen-
tations are shown in intermediate and low level SHARP abstracts.

2.1.2b Intermediate Level Design Representation

Figure 50 uses SHARP Invocation Diagrams to represent the structure of
program units called in the bodies of Procedure ABORT_TRANS (the visible
procedure in Package 2), Procedure START_BEG (the first visible procedure
in Package 3). and Procedure START_BKPT (the second visible procedure in
Package 3).

102

Layer 1

AP_
NOTIFY

ABORT-
TRANS

(b) Package ABORT_HANDLER

Layer 2

P2

START_
BEG

START__
BKPT

(c) Package RECOVERY_HANDLER
P3

FIGURE 48. LAYERS (DESIGN FOR MAINTAINABILITY)

103

p?

ABORT_
TRANS -

START
BEG

WORK
STATION

START_
BKPT

P3

FIGURE 49. INTERACTION (DESIGN FOR MAINTAINABILITY)

104

FIND-
TRANS

ABORT
•TRANS

GET_
TRANS

LOCK_
TRANS

UPDATE.
CTR

UPDATE-
TABLE

(a) Procedure ABORT_TRANS (Package P2)

BEG

START.
BEG

UPDATE-
CTR

UPDATE-
TABLE

(b) Procedure START_BEG (Package P3)

BKPT

START_BKPT /±\
UDPATE.
CTR

UPDATE.
TABLE

(c) Procedure START_BKPT (Package P3)

FIGURE 50. INVOCATION DIAGRAMS FOR SELECTED ADA PROCEDURES

105

These diagrams are intermediate level SHARP abstracts. In large and com-
plex computer programs, the bodies of program units visible in object tasks
and packages may be complex. Accordingly, their design should typically be
abstracted into understandable levels with constrained detail. Excluded
detail is passed to the bodies of called program units. These bodies are,
in turn, constrained to an easily understood amount of detail, with lower
detail moved again to called program units.

2.1.2c Intermediate Level Design Representation

At a yet lower level of design abstraction, pictorial options of SHARP can
be used to represent selective detail. Figure 51 provides SHARP Data Flow
Diagrams to establish parameters passed between Task AP_NOTIFY (Layer 1)
visible program units declared in the specifications of Packages PI and P2
(Layer 2).

Figure 52 is a SHARP Task rendezvous Diagram representing a rendezvous
between Task PROCESSINGJTRANS AND TASK AP_NOTIFY, and between the
workstation and Task AP_NOTIFY.

Figure 53 provides a set of Data Structure Diagrams showing the data
structures established within Packages 2 and 3.

2.1.2d Lowest Level Design Representation

At the lowest level of design representation, SHARP junctions with
traditional design representation techniques. Specifically, it utilizes
annotated pseudo code to represent operations on variables and a glossary
to define variables and other data structure detail.

Figure 54 shows the pseudo code used to represent logic in the body of Task
AP_NOTIFY and in the bodies of Procedures ABORT_TRANS, START_BEG and
START_BKPT.

2.2' DESIGN VARIATIONS

2.2.1 Design for Execution Speed

Various design options can be taken to increase execution speed. For
example, since the most time consuming operation in the Ada language is
task rendezvous, by limiting the use of tasks we gain speed of execution
(and, as a by-product, simplify testing of Ada code).

The designer decides to increase execution speed by implementing Object 1
using procedures encapsulated in an Ada package, rather than Task
AP_NOTIFY. Figure 55 shows his approach, where a procedure NOTIFY_OPERATOR
has been established in a Package PI, named TRANS_HANDLER.

As shown in Figure 56, NOTIFY_OPERATOR is called by Task PROCESSING_TRANS.
The procedure call is faster than the original task rendezvous between Task
PROCESSING_TRANS and the Layer 1 object implementation in Task AP_NOTIFY.

106

AP_NOTIFY (Caller) AP_NOTIFY (Caller) AP_NOTIFY (Caller)

TT
i ii—11

TRANS_ID
STATUS

ABORT.
TRANS

P2

I
Jl—I L

TRANS_IO
STATUS

START_
BEG

P3

TRANS_ID
STATUS

START.
BKPT

P3

FIGURE 51. DATA FLOW DIAGRAMS

WORK
STATION

7
'PROCESSING-
TRANS /

JEZB—

OPERATOR COMMAND

FIGURE 52. TASK RENDEZVOUS DIAGRAM

107

VISIBLE DATA STRUCTURE

TYPE 1 2 TYPE/SUBTYPF

1. TRANSACTION_TYPE
2. STATUS_TYPE SH

DECLARATIONS

CONSTANT

VARIABLE EN I

1 2
DECLARATIONS

1. TRANS_ID
2 STATUS

^ VARIABLE
T1 T2 DECLARATIONS

/\ 1 TYPES
/ V 1. CONSTANT_T1

2. PRESSURE T2

/// 6 3. TEMP_T3

4. STATE_T4

CONSTANTS

1. MAX

2. MIN

3. NORMAL

/// O
VARIABLES

1 LOWER_PRESSURE

2. UPPER_PRESSURE

3. UPPER_TEMP

PACKAGEABORT_h HANDLE 1st
4. LOWER_TEMP

5. LOWER_STATE

*/ 6. UPPER_STATE

LOCAL DATA STRU CTURE

1 2 3 4

TYPES/ iBI a
SUBTYPES 111

RL RL RL

1 2 3

- BB MSB JE3

1
EN

CONSTANTS its
T1 T1 T1

1 2 3 4 5
HI

6

VARIABLES HI V k\
T2 T2 T3 T3 T4 T4

(a) PACKAGE ABORT HANDLER

FIGURE 53. DATA STRUCTURE DIAGRAMS

108

START_BEG START_BKPT

Package RECOVERY_HANDLER

TYPE

1. IDENTIFICATION
2. TRANSACTION_TYPE
3. STATUS_TYPE
CONSTANT

1. RESTART_NUM
2. RECOVER_NUM

VARIABLE

1. TRANS_ID
2. STATUS
3. BKPT
4. MID^DDRESS
5. STATUS_NUM

1 2 3

1 2

it
I I
12 3 4 5

T2 T3 B T1 T3

P3

Type'Subtypc
Declarations

Conslani
Declarations

Variable
Declarations

(b) Package RECOVERY_HANDLER

FIGURE 53. (CONCLUDED)

109

Begin pseudo code for Task AP_NOTIFY

Receive operator command
Establish TRANSID
If TRANS ID-ABORT then

call Procedure ABORTTRANS
Receive and check STATUS to confirm 'abort*
Inform operator of result

Else if TRANS_ID - RESTART then <
call Procedure START_BEG
Receive and check STATUS to confirm 'restart'
Inform operator of result

Else if TRANSID - BREAKPOINT then
call Procedure STARTBKPT
Receive and check STATUS to confirm

'restart from breakpoint'
Inform operator of result

Else notify operator of incorrect TRANS ID code

end if

End pseudo code for Task APNOTIFY

(a) PSEUDO CODE FOR TASK AP_NOTIFY (T1)

Begin pseudo code for Procedure ABORT TRANS

Receive TRANS_ID
Assess TRANSID to establish transaction to be aborted

To abort transaction
Call Procedure FINDTRANS
Call Procedure GET_TRANS
Call Procedure LOCKTRANS

To record abort
Call Procedure UPDATECTR
Call Procedure UPDATE TABLE

End pseudo code for Procedure ABORT_TRANS

(b) PSEUDO CODE FOR PROCEDURE ABORT TRANS (P2)

FIGURE 54. SHARP LOWEST LEVEL ABSTRACTION

110

Begin pseudo code for Procedure START BEG

Receive TRANSID
Assess TRANS_ID to establish transaction to be restarted

To restart transaction
Call Procedure BEG

To record restart
Call Procedure UPDATECTR
Call Procedure UPDATE TABLE

End pseudo code for Procedure START BEG

(c) PSEUDO CODE FOR PROCEDURE START_BEG (P3>

Begin pseudo code for Procedure START_BKPT

Receive TRANS ID

Assess TRANS_ID to establish transaction to be
restarted from a breakpoint

Establish location of breakpoint

To restart transaction from breakpoint
Call Procedure BKPT

To record restart from breakpoint
Call Procedure UPDATECTR
Call Procedure UPDATETABLE

End pseudo code for Procedure STARTBKPT

(d) PSEUDO CODE FOR PROCEDURE START_BKPT (P3)

FIGURE 54. (CONCLUDED)

111

Layer 1

NOTIFY.
OPERATOR

(a) Package TRANS. HANDLER P1

ABORT.
TRANS

P2

START.
BEG

START.
BKPT

P3
(b) Package ABORT^HANDLER

Layer 2

(c) Package RECOVERY.HANDLER

FIGURE 55. LAYERS OF PACKAGES (DESIGN FOR SPEED)

112

P2

/

ABORT_
TRANS

WORK
STATION

MAIN

4- \r

OF
/

/
/

ROCESSIN
TRANS

I

NOTIFY_
OPERATOR
V

START_
BEG

Pi

START,
BKPT

P3

FIGURE 56- PACKAGE INTERACTION (DESIGN FOR SPEED)

3^ 113

With this design, Task PROCESSING_TRANS has been assigned the responsibil-
ity of interacting with the operator's work station through on Ada task
rendezvous. Otherwise, the implementation of Object 1 internal detail is
essentially the same using a package as it was using a task.

2.2.2 Design Subject to Memory Constraint

There may be times when a military system must be designed with some limi-
tation on the availability of memory. Although the latest advancements in
hardware have made commercial memory inexpensive and extensively available,
this is not necessarily the case with a defense system. The cost of
"ruggedized" memory chips used in defense systems is much greater than the
commercial counterpart. Also, since space in a military system is often
limited, the physical space constraint can limit the amount of memory
available. This is especially true in avionics systems.

In order to save memory in the implementation of the restart/recovery
process, the designer decides to establish common Ada program units.
Figure 57 shows his approach, where Procedures UPDATE_CTR and GEN_TABLE
have been removed from Packages P2 and P3 and inserted into a Package 4,
named R_R_SERVICES.

These procedures establish a record of the transaction abort or restart.
Specifically, Procedure UPDATE_CTR updates variables containing transaction
status (i.e., aborted or restarted from the beginning or a breakpoint).
Procedure UPDATE_TABLE tracks all transactions, keeping a record of active,
halted and inactive transactions.

This design variation saves memory by establishing the package of common
program units. However, the implementation of Object 2 in Package 2 and
Objects 3 in Package 3 is no longer completely independent of each other,
since they are now coupled through the use of common program units in
Package P4, as shown in Figure 58.

3 CHAPTER SUMMARY

SHARP establishes a set of pictorial abstracts that can be used to repre-
sent an object-oriented design for an Ada computer program. With such a
design, we can localize design complexity, thus reducing interdependence
relationships and thereby facilitating cost effective software maintenance.

In the past, large global sets of parameters and routines were extensively
shared. If any one of the global variables or routines were modified, a
"domino effect" was introduced in that the change affected several differ-
ent parts of the computer program. Seemingly innocent changes caused
traumatic problems. By segmenting a program into objects, and constraining
the interface between the objects, software maintenance becomes a simpler
and less expensive problem. This is important to the Air Force since
historically software maintenance costs have been very high.

In practice, a designer of a large and complex Ada computer program may
have to face certain design constraints as he develops his object-oriented
design. For example, certain objects may have execution speed constraints

114

Layer 1

NOTIFY.
OPERATOR

(a) Package TRANS.HANDLER P1

•ED

ABORT.
TRANS

START.
BEG

START_
BKPT

(b) Package ABORT_HANDLER P2

Layer 2

(c) Package RECOVERY^HANDLER
P*

UPDATE
CTR

- GEN_
TABLE

(d) Package R_R_SERVICES P4

Layer 3

FIGURE 57. LAYERS OF PACKAGES (DESIGN FOR LIMITED MEMORY)

115

ABORT.
TRANS

P2

MAIN

•h ±r

WORK
STATION

S •

PROCESSING
-TRANS

7
j

11
—

NOTIFY.
OPERATOR
/

UPDATE,
CTR

GEN_
TABLE

P3

P4

FIGURE 58. PACKAGE INTERACTION (DESIGN FOR LIMITED MEMORY)

116

while others may have memory constraints. These constraints may have to be
introduced at the expense of some of the power of the object-oriented
design (e.g., a compromise to the extent of object independence may have to
be introduced). Therefore, the final form of the object-oriented design
may be affected by design goals conflicting to some extent with the goals
of an object-oriented design with high maintainability.

Whatever the design goals are, the ultimate design can be effectively
represented by SHARP abstracts. At the highest level of the design, the
abstracts represent Ada packages introduced to encapsulate objects or sets
of objects. The interaction of the objects is represented by SHARP
invocation diagrams, and the bodies of program units responsible for
communication between objects, visible within each task or package encap-
sulating an object, can be represented by the SHARP Hierarchy and Invoca-
tion Diagrams. Abstracts envisioned as "blow ups" of entities identified
in an invocation diagram can be used to represent details of task rendez-
vous, data flow between program units and data structures. The later
diagram shows information hiding within data structures local to objects.
At the lowest level of SHARP, annotated pseudo code is used to represent
operations and logic within the bodies of individual units.

117

CHAPTER IV

Steps for an Object-Oriented Ada-Unique Design

This chapter presents steps that can be used to design an Ada computer
program using principles of object-oriented design. It provides an example
of applying the steps to develop and represent the design using SHARP.

1 INTRODUCTION

1.1 BACKGROUND

Projections for the amount of software to be implemented using Ada are very
large and will incur a high acquisition cost if developed using traditional
methods. The high cost, and typical schedule slippage of software develop-
ment efforts in the past, can be attributed to several factors, including
the effect of complex dependency relationships between types, variables and
program units. However, as we have indicated, dependency relationships can
be controlled using Ada-unique object-oriented techniques, since loosely
coupled Ada packages and tasks can be developed and tested largely independ-
ently.

Given the size and complexity of projected software systems, the government
software review process, and the large development teams, there is a need
for representing a software design in an understandable and abstracted
manner.

1.2 CHAPTER SCOPE

In this chapter, selective detail of an Ada-unique object-oriented design
is presented for a command and control computer program of a hypothetical
space station. The use of each level of SHARP abstracts is demonstrated in
representing the design of the command and control computer program.

Section 2 presents a set of steps that can be used to establish the design
of a large and complex computer program to be implemented using Ada.
Section 3 presents SHARP abstracts that document the results of the steps
when applied to represent the design of the command and control computer
program.

2 OBJECT-ORIENTED ADA DESIGN

2.1 INTRODUCTION

When using object-oriented design techniques during software development,
the requirements for a large computer program are distributed among objects.
The implementation of each object has a unique set of operations and a
local state defined in a data structure. The unique operations are known
only to the object implementation. Access to an object implementation can
only be made via calls to program units in packages or entry points to
tasks introduced to implement the object.

119

As described in Chapter II, the implementations of objects hide information
about their internal representation and in a sense, mimic real world
objects, such as telephones. Such real world objects present a small num-
ber of basic operations that can be performed on them (e.g., dial number,
answer, hang up) and hide the relatively complex details of their implemen-
tation. Since the objects are essentially independent of each other, one
object implementation can be modified without affecting a second. For
example, one telephone receiver can be modified or replaced without
affecting others.

In Ada, packages and tasks are important to the implementation of object-
oriented designs. For example, information hidden within a package limits
dependency relationships between objects. Only parameters declared in
program units, contained within the specification of a package, can be
passed from one package to another.

2.2 STEPS FOR ESTABLISHING AN OBJECT-ORIENTED DESIGN

A software engineer must take a series of steps to establish the design of
a large and complex computer program. A basic set of steps that take
into account principles of object-oriented and structured top-down design,
and the SHARP graphics used in conjunction with each step, are summarized
in the following paragraphs.

2.2.1 Step 1 - Establish Processes

For a given set of software requirements, in Step 1 we identify processes
needed to establish concurrent processing threads referred to as
processes, and we assign requirements to each process as appropriate. With
Ada, each process can be established by a task declared in the main program,
as illustrated by the SHARP pictographs shown in Figure 59. As discussed
in Chapter I, processes consist of abstracted threads of program units
needed to service user requests from work stations and other hardware
interfaces (e.g., communication links); and to perform processing
automatically initiated on a periodic or some other basis.

2.2.2 Step 2 - Establish Objects for Each Process

In Step 2, we identify objects specified in the requirements assigned to
each process. With respect to computer programs, an object is a system
component implemented in software using a set of operations unique to it
and a local data structure not accessible by entities external to it. With
Ada, objects can be implemented by tasks, or by packages as illustrated in
Figure 60.

For each process, objects will account for data reception, storage,
manipulation and output. Data reception objects might be protocol managers,
command interpreters, message handlers, sensor monitors, and external
device data receivers. Data storage objects •might be file or data base
managers. Data manipulation objects might be controllers, planners,
operations managers, trackers, detectors, and testers. Data output objects
might be display, tape or hard copy data generators, as well as data
exporters to communication links, distributed processors or other hardware
devices.

120

FIGURE 59. STEP 1 - ESTABLISH PROCESSES

FIGURE 60. STEP 2 - ESTABLISH OBJECTS FOR EACH PROCESS

121

An experienced designer will group together requirements for each of the
identified objects. As the designer makes these groupings, he will keep in
mind that each object should be implemented with unique operations, and a
local hidden data structure of variables and constants needed to facilitate
the unique operations. He will also keep in mind that (a) the object's
local hidden data structure should not overlap with a visible data
structure that facilitates interobject communication; (b) the character-
istics of the requirements should be consistent (e.g., requirements for
data base management should not be mixed with requirements for such things
as statistical processing and display); and (c) the requirements assigned
to an object should be constrained, to the extent possible, so that the
implementation of the object is relatively easy to understand, implement,
compile and test.

Less experienced designers might use a more mechanical approach suggested
by Booch, where nouns in the software requirements specification are
candidate objects and verbs identify operations on the objects. This
approach to object identification is described in detail in Section 3.3 of

/ an Object Oriented Design Handbook for Ada Software 7

2.2.3 Step 3 - Establish Interfaces Between Objects

In Step 3, we establish parameters to be passed between the implementation
of objects and the program units to be used to facilitate the parameter
passing, as illustrated in the first part of Figure 61. With Ada, proce-
dures and tasks declared in the specification of an object package can be
used to facilitate such parameter passing, as illustrated by the SHARP
Invocation diagram in the second part of Figure 61. As shown, the packages
can be grouped into layers in an hierarchical manner, for clarity and ease
of testing.

As a general rule, parameters used in the formulation of object implementa-
tions should not be passed between the implementations, which would couple
the implementations. If they have to be passed, they should be made
private or limited private. In this way, the receiving object package has
limited use of the passed parameters. For example, if the parameter is
private, the user is excluded from applying operations on the parameter
other than those operations defined within the package specification. The
only exception to this rule is assignment and tests for equality. If the
parameter is limited private, assignments and tests for equality are no
longer automatically available.

2.2.4 Step 4 - Establish Hidden Internal Design of Each Object

2.2.4a Establish Internal Structure of Each Object Implementation

In Step 4, we establish the structure for the internal complexities of an
object implementation using a traditional structured/top-down approach and
abstraction of detail into levels. For example, a relatively small and

122

PASS_P1

OBJECT P1

PASS_P2

OBJECT P2

PASS_P3

OBJECT P3

FIGURE 61. STEP 3 - ESTABLISH OBJECT INTERFACES

123

PROCESS N

PASS P1

PASS_P2

OBJECT PI

PASS_P3

OBJECT P2 OBJECT P3

FIGURE 61. (CONCLUDED)

124

easily comprehended portion of detail can be implemented at one level, with
the remainder of the detail implemented in called program units at lower
levels. At each lower level, the abstraction process is repeated. With
Ada, a controlling structure of subprograms and tasks can be assigned to
the levels, and packages (e.g., containing existing or common program
units) can be accessed by the subprograms and tasks using the Ada "with"
clause, as illustrated by the SHARP Hierarchy Diagram in Item a of Figure
62 and the SHARP Invocation Diagram in Item b.

2.2.4b Establish Data Flow Between Program Units Internal to Each
Object Implementation

In Step 4, we also establish the details of interaction between the
internal program units defined in Substep 4a. With Ada, calls are made to
pass parameters from one subprogram to another, as illustrated by the SHARP
Subprogram Data Flow Diagram shown in Item a of Figure 63; and with Ada,
task rendezvous is introduced for passing parameters from one task to
another, as illustrated by the SHARP Task Rendezvous Diagram shown in Item
b of Figure 63.

2.2.4c Establish Annotated Pseudo Code for Program Unit Bodies

For internal program units used to implement an object, in Step 4 we
furthermore establish processing to be undertaken in the bodies of these
program units, including the algorithms, operations on variables, deci-
sions, generic instantiations, exceptions, high-level and low-level I/O,
decisions and other logic. We represent this information in annotated
pseudo code. For example, Figure 64 shows pseudo code that could be used
to represent the body of an Ada procedure.

2.2.4d Establish Data Structure of Each Object Implementation

To complete Step 4, we establish the data structures for each object
implementation. Figure 65 illustrates the definition of types, variables
and constants for an object implemented within an Ada package. As shown,
passed parameters are declared in a visible data structure, while variables
used to facilitate operations unique to the object implementation are
hidden in the local data structure.

With SHARP an integer type is represented by an upright narrow rectangle
with the letter "I" underneath it; a real type with the letters "RL"; and
a enumeration type with the letters "EN." Furthermore, with SHARP an array
type is represented by an upright narrow rectangle with the letters "AR"
underneath it; a record type with the letter "R," underneath it; a discrimi-
nated type with the letter "D;" and a task type with the letters "T."

The type of a variable or constant is represented by the first letter of a
predefined type (e.g., I for INTEGER); and by the letter "T" followed by
the type glossary number (e.g., T2 for the 2nd type) for a defined type.
See Section 2.4.4 of Chapter II for a detailed discussion of SHARP Data
Structure Diagrams.

125

1

J\
»U_1»/

^^ \ P3

2 PU_2b PU_2c

L _7 \ V_
3 PU_3a PU_3b PU_3c PU_3d

/
/ \ N7

\ N

en n \ / V\
2 4
UJ

PU_4a

/ \

PU_4b PU_4c /PU_4d/ /PU_4« / /PU_4f/ [^ O Gj
_Z \jn 1-J

5 £11 J>* PV „Sb PV-?c _P<J_5d

/ \ / \
S PU_Sa PU _6b PU_Sc »U_6d PU_6e PU_6(

/ P10 1 P15

PU._7a °U_7b

(a) SHARP HIERARCHY DIAGRAM

FIGURE 62. STEP 4 - ESTABLISH INTERNAL STRUCTURE OF EACH OBJECT

126

PU_3a PU_3b

i

PU_4a PU_-tb

> ^

•«"
^

P5

\:

PU_4c L
PU_5c

s

P3

PU_4d / /PU_W7 YPJJ

7
PU-Sd

PU.6C PU„Sd|

P8

PU 6e PU_V

H
s

P10

pq

I

P15

.

(b) SHARP INVOCATION DIAGRAM

FIGURE 62. (CONCLUDED)

127

AA

t

PAR1

PAR2

PAR3

PAR4

± T

(a) DATA FLOW DIAGRAM (b) TASK RENDEZVOUS DIAGR AM

FIGURE 63. STEP 4 - ESTABLISH DATA FLOW BETWEEN PROGRAM UNITS
INTERNAL TO EACH OBJECT

128

Begin Procedure SOFT_DEV_ESTIMATE

*SS - 0

for 0 - 1, 2, ... 0(p)

#DATA - # TYPES (p,o) + #CONSTS(p,o) + #VARS(p.o)

ttPCALL - #SUBCALL(p,o) + »TASKS(p,o)

#PBOD - *INSPECT_COUNT(p,o)

DSI(p.o) - #DATA + #PCALL + #PBOD

<*SS - *SS + DSI(p.o)

end 1 nop

end loop

if LANGUAGE - FORTRAN Chen

*SS - #SS*FORTRAN_CALIBRATE

else if LANGUAGE - JOVIAL Chen

sSS c #SS*JOVIAL_CALIBRATE _

else if LANCUAGE_ASSEMBLY Chen

*SS - #SS*ASSEMBLY_CALIBRATE

else

*SS - «SS*ADA_CALIBRATE

end if

raise excepcion

if *SS-2000

©

FIGURE 64. STEP 4 - ESTABLISH ANNOTATED PSEUDO CODE FOR PROGRAM UNIT BODIES

129

case COCOM_MODE is

when ORGANIC ->

0
K - 2.U

E - 1.05

when SEMI_DETACHED ->

K - 3.0

E - 1.12

when EMBEDDED ->

K - 3.6

E - 1.2

I case

Call Procedure COST ESTIMATE

Call Generic Procedure SCHEDULE_ESTIMATE ..

where

KCEN - K

EGEN - E

excepcion handler

Call Procedure MODULE_ESTIMATE

end exception handler

Package P10

End Procedure SOFT DEV ESTIMATE

FIGURE 64. (CONCLUDED)

130

VISIBLE DATA STRUCTURE

TYPE
1 2 TYPE/SUBTYPE

1. TRANSACTION_TYPC
2. STATUS-TYPE HS

DECLARATIONS

CONSTANT

VARIABLE EN 1

1 2
DECLARATIONS

1. TRANS_ID
2. STATUS

^ VARIARI F
11 12 111 Cl AIIAI li IN',

A / TYPES

/ V 1, CONSTANTT1

2 PRESSURE_T2

/// 6
3. TEMP_T3

4. STATE_T4

CONSTANTS

1 MAX

2. MIN

3 NORMAL

/// Q
VARIABLES

1 LOWER_PRESSURE

2 UPPERPRESSURE

3 UPPER_TEMP

PACKAGE ABORTJ HANOLERP2 1 *
4. LOWER_TEMP

5 LOWERSTATE

*/ 6 UPPER STATE

LOCAL DATA STRU CTURE /

1 2 3 4

TYPES/ •
SUBTYPES HP 1

RL RL RL EN

1 2 3

CONSTANTS tti
T1 T1 T1

1 2 3 4 5 6

VARIARI FS HI HI
T2 T2 T: T3 T4 T4

FIGURE 65. STEP 4 - ESTABLISH DATA STRUCTURE FOR EACH OBJECT

131

2.2.5 Step 5 - Refine the Design

Tn Step 5, we check the design for consistency and correctness. For
example, we compare parameters passed between program units to those
defined In the data structure diagram. We also check to make sure the
implementation of each object is relatively easy to understand, implement,
compile and test. For example, we could estimate the number of Ada source
statements required to implement each object, using the algorithms defined
in Chapter VI. We then could calculate the approximate time to compile
each object implementation. For each object that is too large (and
therefore, takes too long to compile), we would partition it into a set of
sub-object implementations as illustrated in Items a and b of Figure 66.
Then we would repeat Steps 3 and 4 for the group of sub-object
implementations. The sub-objects would be used to construct the original
object (i.e., small objects can be used to build large objects) or would be
used to replace the original object, as illustrated in Item c of Figure 66.

3 EXAMPLE

3.1 INTRODUCTION

In this section, we apply the software design steps described in Section 2
to establish an Ada-unique design for the command and control software
associated with the hypothetical earth orbiting space station. As
specified in Appendix D, the software provides capabilities to (a) collect
and process experimental data, (b) monitor sensors, (c) orient solar
panels, and (d) perform built in tests of system processing hardware.

3.2 ESTABLISHING PROCESSES (STEP 1)

The first step in the design of a large and complex computer program is to
identify the top level concurrent processing threads needed to implement
software requirements. In the space station example, three processes can
be established to implement the following software requirements:

1) The collecting, processing and statistical display of
experimental data, as commanded by work station called
i||f.'J<i| .-'.

2) The check of environmental status and system processing
hardware fitness on a periodic basic, where the results are
reported to the operator console at a work station called WS

3) The orientation of solar panels as commanded by earth
mission centers.

These processes are implemented by Ada tasks declared in the main subpro-
gram. The SHARP diagram shown in Figure 67 graphically presents the
results of this initial design step.

Ideally the processes are loosely coupled with little or no communication
between the implementing tasks. This allows largely independent develop-
ment of the system requirements assigned to the top level tasks. This goal
is met in the design to follow in that the three processes do not

interact.

132

PASS_P1

OBJECT P1

PASS_P1(a) PASS_Pl(b) PASS_P1(c)

OBJECT P1A OBJECT P1B OBJECT P1C

(a) PARTITIONING A LARGE OBJECT INTO A SET OF SMALLER OBJECTS

PASS_PKa)

OBJECT P1A

PASS_Pl(b) PASS_P1(C)

0BJECT_P1B OBJECTP1C

(b) INVOCATION DIAGRAM FOR THE SET OF SMALLER OBJECTS

FIGURE 66. STEP 5 - PARTITION LARGE OBJECTS INTO A SET OF SMALLER OBJECTS

133

/
PPASS_P1(b)

PASS P1(a)

OBJECT P1A

PASS_P1(C) PASS_P2 PASS_P3

OBJECT P1B 08JECT_P1C OBJECT_P2

(c) RESULTING NEW SET OF OBJECTS

OBJECT P3

FIGURE 66. (CONCLUDED)

134

z

cr
<
LU

00

$
z
O

oo

cr
O

00
en
O
00
2
LU
oo

Z
O

h <
I-
00

or
O

tf

_J
LU
2
<
a.

*» X ^V I ""^ / X oc
^ / 3 •» f

7*-^ [X ° ^»
«•»

«•» ^»
^^S cc

2 o
< K

s

\

Z
o

1
2
O
t-
<

X h-
00

1
<
1-
<

/ 1 o
/ tt p s 2 O

s LU QJ

s ^» 5 -I / x

X
P

E
R

I

C
O

L

/ LU
•

•
•

H«

LU

00

<
:>
LU
a
3
Q
UJ
O
O
OC
0.

X

-I
CD

<
I-
00
LU

oo
UJ
00
00
LU
U
o
cc
a.

CO

LU
DC

D
a

135

3.3 ESTABLISHING OBJECTS FOR EACH PROCESS (STEP 2)

3.3.1 Objects for the Experimental Data Collection and Reduction Process

The 'Experiment Data Collection and Reduction' process collects data from
three experiments, stores data samples in a data base and provides inter-
active access to the data base via work station MICRO_A. At the work
station, the operator can view available data samples, command the display
of statistical averages for a specific data sample, and command the display
of a normal distribution or poisson distribution of the sample.

The objects needed to implement these requirements are presented in Figure
68. The objects are as follows:

a. Experiment Data Collection, which is implemented by program
units contained within Package EXP_PL1_A. It contains three
visible tasks that assemble data samples (one for each of
the three different experiments) by receiving sensor
readings during rendezvous with experiment hardware data
ports. The readings are grouped in lists of designated
sizes. Each list is referred to as a data sample.

b. Data Base, which is implemented by program units contained
within Package EXP_PL2_A. It contains Task RECORD_DATA,
which receives data samples from the Experiment Data
Collection object and stores them by sample and sensor
identification numbers. If local memory is full, the data
samples for that experiment are archived in mass memory.
Procedure GET_RECORD is provided to access data samples.

c. Command Coordinator, which is implemented by the package
EXP_PL1_B. This object responds to input commands received
from the work station at microprocessor MICRO_A. It
accesses data via the Data Base object to retrieve a
specific data sample for viewing, or subsequent statistical
processing. It also can respond to user commands to list
the identifiers of experiment data samples.

d. Statistical Distribution, which is implemented by the
package EXP_PL2_B. It is used to establish a data sample's
mean, standard deviation, and normal or poisson distribu-
tion. This object uses math functions contained in Package
EXP_PL3_A. The results of its calculations are presented
on the screen of work station MICRO_A.

3.3.2 Objects for the Station Monitor Process

The 'Station Monitor' process periodically takes power, temperature and
pressure readings from space station sensors. A range of acceptable
readings are either input by the operator or are automatically established
(i.e., default values). If a reading is out of bounds, an alarm message is
displayed at the work station. A record is made of sensor readings and
alarm messages.

136

(EXPERIMENT DATA COLLECTION) (COMMAND COORDINATOR)

EXP PL2 A

B
EXP PL2 A

EJEJU
EXP 1 EXP 2 EXP 3

EXP PL1 A

EXP PL2 B

CMD

EXP PL1 B

LAYER 1

(DATABASE)

EXP PL2 A

(STATISTICAL AVERAGE)

/ /

/ /
RECORD_ GET_
DATA RECORt j

n EXP PL3 A

STAT AVE

EXP PL2 B

LAYER 2

FIGURE 68. OBJECT IMPLEMENTATIONS IN PROCESS TASK
"EXPERIMENT DATA COLLECTION" (STEP2)

137

In addition, a built-in-test is periodically run to check the fitness of
the selected system hardware. Messages indicating detected errors are
displayed at the work station.

The objects needed to implement these requirements are represented in
Figure 69. The objects are as follows:

a. Environmental Sensors, which is implemented by the package
M_PL1_A. It contains three tasks that rendezvous with
environmental sensor hardware to obtain values for power,
temperature and pressure. The values are passed to the
sensor processing package M_PL2_A.

b. Sensor Processing, which is implemented by the package
M_PL2_A. It contains a task to receive and record sensor
values. A check sensor procedure is invoked to determine if
the sensor value is in an acceptable range. If a reading is
out of bounds, program units in the alarm package are
invoked, an alarm is generated at the work station WS and
the alarm is recorded in mass storage.

c. Alarm, which is implemented by the package M_PL3_A. Program
units within it are invoked when the Sensor Processing
package detects an out of bound sensor condition. An alarm
message is generated at the work station WS and the alarm is
recorded in mass storage.

d. Command Processor, which is implemented by the package
M_PL1_B. It is invoked by the Task STATION_MONITOR and
accepts a user command made at Work Station WS to set a
range of acceptable sensor values. Task CMD invokes the
Procedure SET_LIMITS in the sensor processing package to
update the acceptable sensor ranges.

e. Built-in-Test, which is implemented by the package M_PL1_C.
It contains the Task BIT, which periodically checks the
functioning of the central processor by executing a series
of Ada instructions. Unexpected results are reported to the
work station WS as processor error conditions.

3.3.3 Objects for the Solar Panel Orientation Process

THE 'Solar Panel Orientation' process controls the orientation of the
solar panel. An earth/satellite communication link provides two-way data
transmission between earth and the space station. The current solar panel
orientation is transmitted to earth and the earth mission centers transmit
directional data to the station to give the desired new orientation.

138

z
H

5
03

00

^
CC
o
00
oo
LU
O
o
CC
Q-

o

o o

rj

z
LU

5
z 00
o LT
a: o
> 00
Z z LU

LU 00

Q

O

LU
E

$
LU

a.

Q.
S
LU
(-

OC
LU

o a.

q
a z
00
00
LU
o
O
cc
0L

CC
o
00
Z
LU
00

CM

LT
LU
>

3
a-

00
1- 1
H
LU
00

la:

R
E

C
0
R

D
_

C
H

E
C

K

S
E

N
S

O
R

S
E

N
S

O

or
LU
>
<

n
a.

s c
<

i
a
CC
o o
LU
QC

5

<
_J

<

CM

a.

oo

cc
o
H
Z
o

I
z
g

<
I-
oo

co
<
(-
oo
oo
LU
U
o
cc
a.
z

QL

5

CQ
o

LD

CC

co

139

The objects needed to implement these requirements are presented in Figure
70. The objects are as follows:

a. Update Orientation, which is implemented by the package
SP_PL1_A. It receives directional data via rendezvous with
radio data link hardware. A new orientation is calculated
using the math package SP_PL2_A and is passed to the panel
arm motion package that uses the old and new orientation to
calculate and implement motions to orient the solar panel.
The new orientation is then sent to the solar panel task for
transmission to earth.

b. Math Package, which is implemented by the package SP_PL2_A.
It contains mathematical functions needed for calculating
the new solar panel orientation.

c. Panel Arm Motion, which is implemented by the package
SP_PL2_B. It uses the old and new orientation to calculate
solar panel arm motions needed to reorient the solar panel.
The panel mount motors package is invoked to generate the
required motions.

d. Panel Motors, which is implemented by the package SP_PL3_B.
Procedures M0T0R1 and M0T0R2, visible procedures within this
package are invoked by Procedure PANEL_ARM_DELTAS of the
panel arm motion package. In this way, the required panel
motions are obtained using two controlling motors. A
library package M0T0R_I0 encapsulates access to low level
control functionally needed for operating the hardware.

3.4 ESTABLISHING INTERFACES BETWEEN OBJECTS (STEP 3)

This section establishes the interfaces between objects of the Experiment
Data Collection and Reduction Process. An invocation diagram for these
object implementations process is presented in Figure 71. The calling
dependencies of the visible procedures in the object packages are repre-
sented along with task interactions.

In Figure 72, a SHARP task rendezvous diagram shows data flow between
hardware and the 'Experiment Data Collection' object implementation, and
data flow between the later and the 'Data Base' object implementation.
Figure 73 shows data flow between the 'Command Coordinator' object imple-
mentation and both the 'Data Base' and 'Statistical Distribution' object
implementation. The parameter passing is used to assemble the experiment
data base, access that data base, and establish statistical distributions
for data selected by an operator. Parameters passed account for operator
commands and the results of statistical calculations. Variables and flags
used to implement the operations unique to each object implementation
(e.g., the statistical calculations) are not passed. Because of this, the
object implementations are decoupled.

140

SP PL2 A

SP PL2 B

(SOLAR PANEL ORIENTATION)

UPDATE ORIENTATION

SP PL1 A LAYER 1

(MATH PACKAGE)

SP PL2 A

(PANEL ARM MOTION)

MATRIX
MULT

SIN COS

D
SP PL3 B

PANEL_ ARM_DELTAS

SP PL2 B LAYER 2

(PANEL MOTORS) n MOTOR 10

IV OTOR 1 MOTOR 2

SP PL3 B
LAYER 3

FIGURE 70. OBJECT IMPLEMENTATIONS IN PROCESS
TASK "SOLAR PANEL" (STEP 2)

141

03 CO

0.
1

a.
X
LU

'

>
<

1

<
H
V)

-I
a.

I
a.
x

z
o

u
<
ac

u
UJ
->
CO
O

UJ
H

Z
o

UJ

O a

g
z
UJ

cc
UJ
a.
x

00
00
UJ
U
O
cc
Q.

z
I
H
S
00
Z
O
(-
<

z
UJ

2
UJ
_i
Q.

5

-5
CO
O
LL

O
LU
U
<

142

CO

to 1
LU
3

m
i

g
I

<
>

0. LU 1
X _J LU
LU CL _l

5: QL

< 5
CO <

CO

n
Q.
LU

1-
co

e/>
*
CO

<
t-

<
h-

< o
o 2

1
Q (-

< cr O
O
o 2

D

O
U
t- u
u,

x
O
2
Ul

•J
K
LU
on

D
O
>
LU

Q
2

CM

tr
D
O

143

EXPERIMENT DATA COLLECTION

<> COMMAND

1
CMD CMD

REQUEST

SAMPLE_VALUES

SAMPLE IDS

T

GET RECORD

DISTRIBUTION_KIND

SAMPLE_VALUES

MEAN

STD_DEV

DISTRIBUTION VALUES

STAT AV

FIGURE 73. DATA FLOW BETWEEN OBJECT COMMUNICATING SUBPROGRAMS
(STEP 3)

144

3.5 COMMENCE DESIGN OF OBJECT IMPLEMENTATIONS (STEP 4)

3.5.1 Experiment Data Collection Object Implementation (Package EXP_PL1_A)

The 'Experiment Data Collection' object, which is implemented by a Package
EXP_PL1_A, contains three visible communicating tasks that rendezvous with
experiment hardware and build lists of experimental values, which are
referred to as samples. For a communicating task the hierarchy diagram is
shown in Item a of Figure 74, a data flow diagram is presented in Item b,
and annotated pseudo code is presented in Item c. These SHARP abstracts
commence the internal design of the 'Experiment Data Collection' object
implementation. With them, an initial version of the object's data struc-
ture can be established as shown in Item d.

(n • 1,2,3)

LAST POINTER n

APPEND LISTn APPEND LISTn

(a) INVOCAI ION UIAI.IIAM (b) DAIftl IDWIHAiiMAM

FIGURE 74. INTERNAL DESIGN OF THE 'EXPERIMENT DATA COLLECTION-
OBJECT (STEP 4)

U5

Begin pseudo code for Task EXP_n

initialize variables including SAMPLE_ID_n =1

loop .

for i - 1 to SAMPLE_SIZE

rendezvous with sensor to receive
current sensor reading VAL_n

CALL APPEND_LISTn to enter sensor reading into a linked list

end for
We now have a list consisting of 'SAMPLE_SIZE'
sensor readings, which shall be referred to as a sample.

Call Entry Point RDI of Task RECORD_DATA -Package EXP_PL2-A
to pass the sample to the data base object'-

implementation along with its identifi-
cation number

SAMPLE_ID_n - SAMPLE_ID_n+l

end loop

End pseudo code for Task EXP_n

(c) PSEUDOCODE FOR THE BODY OF TASK'EXP 1'

FIGURE 74. (CONTINUED)

146

VISIBLF DATA STFIUCTUHT

TYPES

CONSTANTS

VARIABLES

TYI'I S

1 VALfYPE

VARIABLES

1.
2.
3.

VAL1
VAL2
VAL 3

EXP 1 EXP 2

EXP PL1 A

RL RL

2 3

^^^
I I

///

EXP 3

///

LOCAL HIDDEN DATA STRUCTURE

1 2 3

III
I I I

/

1 23456789

wvwvvw
T1 T1 T1 T? T2 T2 T3 T3 T3

TYPES

VARIABLES

TYPES

1. SAMPLE_ID_TYPE

2. POINTER_TYPE

3. LASTPOINTER TYPE

CONSTANTS

1. SAMPLE_SIZE (1000)

VARIABLES

1. SAMPLE ID)
2 SAMPLE_ID_2
3. SAMPLEID3
4. POINTER1
5. POINTER_2

6. POINTER_3
7. LAST_POINTER_1

8. LASTPOINTER2
9. LAST POINTER 3

(d) DATA STRUCTURE DIAGRAM

FIGURE 74. (CONCLUDED)

147

3.5.2 Data Base Object Implementation (Package EXP_PL2_A)

The 'Data Base' object, which is implemented by Package EXP_PL2_A, contain;;
two visible program units. The first, Task RECORD_DATA, establishes a dald
base containing the experimental data. The data is stored by an experiment
identifier and by a data sample identifier in local memory. The second
visible procedure in Package EXP_PL2_A, Procedure GET_RECORD, retrieves
specific data samples for a specific experiment from the data base. It
searches the data base to find a given experiment and specific samples for
that experiment.

For the communicating program unit 'Task RECORD_DATA', a hierarchy diagrams
is shown in Item a of Figure 75, a data flow diagram is presented in Item
c. Annotated pseudo code for communicating task RECORD_DATA is shown in
Item c, and Procedure GET_RECORD' is shown in Item d. These abstracts
commence the internal design of the 'Data Base' object implementation.
With them, an initial version of the object's data structure can be
established as shown in Item e.

RECORD DATA

SAMPLE_VALUES

SENSOR_NUMBER

SAMPLE ID

ENTER IN DATABASE ENTER IN DATABASE

(a) INVOCATION DIAGRAM (b) DATA FLOW DIAGRAM

FIGURE 75. INTERNAL DESIGN OF THE 'DATA BASE' OBJECT (STEP 4)

148

Begin pseudo code for Task RECORD_DATA

initialize counters and pointers

loop

raise exception

if data base is currently being
accessed by Procedure CMD I Package EXP_PL1_B

if call to entry Point RD1 then

Consummate rendezvous with Task EXP_1
to receive a sample and the samples
identification number

Package EXP_PL1_A

Elsi f call to Entry Point RD2

Consummate rendezvous wi
to receive a sample and
identification number

th

th
the

en

Task EXP_
samples

2 Package EXP_ PL1 A

Else call to Entry Point RD3

Consummate rendezvous wi
to receive a sample and
identification number _

the

th
the

n

Task EXP_
samples

1 Package EXP PL1 A

end if

Call ENTER_IN_DATABASE- to enter sample into data base
keyed on Sensor number and sample identification number

Check to see if memory allocated to sample storage is
full. If so, write data base to disk and clear the data
base memory.

exception handler

do not consummate rendezvous
while data base is being accessed

end ____
end loop
End pseudo code for Task RECORD_DATA

(c) PSEUDO CODE FOR THE BODY OF TASK 'RECORDDATA'

FIGURE 75. (CONTINUED)

149

Begin pseudo code for Procedure GET_RECORD

Receive command from Procedure CMD- Package EXP_PL1_B

if REQUEST = SAMPLE_VALUE_REQUEST then

Fetch and return set of sensor readings for designated
sample by its sensor number and sample
identification number ______^__________^____

elsif REQUEST - SAMPLE_IDS_REQUEST then

Fetch and return list of sample identification
numbers for the designated sensor

Else establish error message for incorrect REQUEST

end if

End pseudo code for Procedure GET_RECORD

(d) PSUEDO CODE FOR THE BODY OF PROCEDURE'GET RECORD-

FIGURE 75. (CONTINUED)

150

TYITS

CONSTANTS

VARIABLES

1. SAMPLE IDTYPE

7 SAMPLE VALUES TYPE

1. SAMPLE_ID_1

2. SAMPLE_ID_2

3. SAMPLE_ID_3

4. SAMPLE_VALUES

5. SAMPLE_ID

6. SAMPLE IDS

1 2

DD
I RL

12 3 4 5 6

T1 T1 T1 T2 T1 T1

(e) DATA STRUCTURE DIAGRAM

FIGURE 75. (CONCLUDED)

151

TYPES

VARIABLES

TYPES

1 SENSOR_NUMBER TYPE

VARIABLES

1. SENSORNUMBER

2 SAMPLE ID

3.5.3 Command Coordinator Object Implementation (Package EXP_PL2_A)

The 'Command Coordinator' object, which is implemented by Package
EXP_PL2_A, contains the visible Procedure CMD. It receives and interprets
instructions from the system operator via the top level process task (i.e.,
Task EXPERIMENT_DATA_COLLECTION). It accesses Procedure GET_RECORD of the
Data Base object to obtain an experimental sample from the data base. It
calls procedures of the 'Statistical Distribution' object to establish a
requested distribution for a data sample retrieved from the data base.
Procedure CMD can also call Procedure DISPLAY to establish for display at
the work station MICRO_A: (a) a list of sample identifiers for a particular
experiment or (b) the data values for a particular sample of a particular
experiment.

For the communicating program unit 'Procedure CMD,' a hierarchy diagram is
shown in Item a of Figure 76, a data flow diagram is presented in Item b,
and annotated pseudo code is presented in Item c. These abstracts commence
the internal design of the Command Coordinator Object implementation. With
them, an initial version if the object's data structure can be established
as shown in Item d.

CMD

GET RECORD DISPLAY STAT_AV

EXP_PL2_A EXP_PL2_B

LIST_SAMPLE_IDS LIST_SAMPLE_ VALUES

(a) INVOCATION DIAGRAM

FIGURE 76. INTERNAL DESIGN OF THE 'COMMAND
COORDINATOR' OBJECT (STEP 4)

152

i

Q.

1
a.
X
LU

CO
LU

a
0

>
<

i

<
i-
co

>
LU

Q
1

a
H
CO

3
<
>

1
Z
C
H
3
5
cr
t-
CO

•

Q

s
1

Z
O
h
3
CQ

cr
h-
co

z >
< LU
LU Q

5 1
Q
t-
CO

CO

z

1
z

CO
LU

D
_l

LU

n
<

a
\-

<
>

1
LU
-J
0.

<

>
I

z
o
H
3
m
cr

>-
<
Q.
to
Q

Z
<
LU

5

E
V-
v>
a

z
o

5i -I ct
CO CO

o a
co

CO
LU

D

oo
LU

3
CO

a

a Q
1

LLI

< >
i

Lt
1

LU

>
<
a.
to

o
CO

Z
CL

z
_J
Q.

5
LU < <
CO CO CO

a

1
LU CO

,_l "J
la. 3

*~ 5 -1

2 < «
_l CO >

z
o

CO
LU

3
_l
<
>

I
Z
o

— — > — >
LU

f
3
CD

3
00

Q O
1

E
1

LU
1

LU
1

LU 1 1
O
co
Z

-I
a. Q.

>
Z
<

Q
1

Q
ct a. >

<
E
O
CO

LU
-I
a.

a LU 3 3 < 1- -1 Z s
CO CO CO CO *? co CJ o a. LU <

2 CO CO CO

O Q

L
IS

T
_

S

A
M

P
LE

_
ID

S

00
5
<
cr
a
<
c
g
o
-I
LL

<
<
Q

3
2

8
LO

UJ
cr
D

-, Q
rr
O

LU
1

CO a.
z >
LU <
CO CO

<
>

CO

a

111 LU
-1 _l
a a
> >.
3 <
CO CO

-•-•-

153

Begin pseudo code for Procedure CMD

Receive command from Process Task EXPERIMENT_DATA_COLLECTION

If COMMAND - SAMPLE VALUE REQUEST then

EXP PL2-A Call Procedure GET_RECORD
to fetch a sample as a
function of sensor number and sample identification number

Call Procedure DISPLAY to display
the set of sensor readings for the
requested sample , ,

elsif COMMAND - SAMPLE IDS REQUEST then

EXP PL2-A Call Procedure GET_RECORD
to fetch list of sample
identification numbers as a function
of sensor number

Call Procedure DISPLAY to display
sample identification numbers for the
designated sensor

elsif COMMAND = STATISTICAL REQUEST then

Call Procedure GET_RECORD
to fetch sensor readings for the
designated sample

EXP PL2 A

J EXP PL3 A Call Procedure STAT_AV_
to establish the mean, standard1-

deviation, and normal or poisson
distribution for the designated sample

Call Procedure DISPLAY to display the
statistical distribution, the mean and
the standard deviation

Else generate error message incorrect command.

end if

End pseudo code for Procedure CMD

1

(c) PSEUDO CODE FOR THE BODY OF PROCEDURE 'CMD'

FIGURE 76. (CONTINUED)

1 54

TYPES

1. SAMPLE_VALUES_TYPE
2 SAMPLE ID TYPE
3. DIS1HIBUTION KINDTYPl
4. STAT_FACTOR_TYPE
5. DISTRIBUTION_VALUES_TYPE

VARIABLES
1. SENSORID
2. SAMPLE_ID
3. SAMPLE_VALUES
4. SAMPLEJDS
5. DISTRIBUTIONKIND
r, Mr AM

/ -jlli I il v

8. DISTRIBUTION VALUES

1 2 3 4 Fi

D DD DD
RL I EN RL RL

1 2 3 4 5 6 7 8

I I II 12 13 14 i -l i •

I Yl'l

VARIABLES

TYPES

CONSTANTS

VARIABLES

1 2 3

III
All II I

1 2 3

///

1 2 3

v\v
T1 T2 T3

m^^m

6 ///

, CMD

?•'<"

•~i

/

TYPFS

1 DISPLAY I ACIOHS I YIM

2 DISPLAY PAHAMETLRS TYPC
3. DISPLAY RESOLUTIONTYPE

CONSTANTS

1 DISPLAY CONST1
2 DISPLAYCONST2
3. DISPLAY CONST3

VAIIIAIII IS

1. DISPLAY_ FACTORS
2. DISPLAY PARAMETERS
3. DISPI AY" RFSOl UriON

Id) DATA STRUCTURE DIAGRAM

FIGURE 76. (CONCLUDED)

I'.'

3.5.4 Statistical Distributions Object Implementation (Package EXP_PL2_B)

The 'Statistical Distributions' object, which is implemented by Package
EXP_PL2_B, contains a visible procedure STAT_AV. It calculates the average
and standard deviation of a received data sample. These results are then
used to calculate a sample's normal or poisson distribution. This package
accesses mathematical functions of a math package.

For the communicating program unit 'Procedure STAT_AV,' a hierarchy diagram
is shown in Item a of Figure 77, a data flow diagram is presented in Item
b, and annotated pseudo code is presented in Item c. These abstracts
commence the internal design of the Statistical Distributions Object
implementation. With them, an initial version of the object's data
structure can be established as shown in Item d.

STAT_AV

SQRT NORMAL POISSON

EXP_PL3A

E_X FACTORIAL

EXP_PL3A

(a) INVOCATION DIAGRAM

FIGURE 77. INTERNAL DESIGN OF THE 'STATISTICAL
DISTRIBUTION' OBJECT (STEP 4)

156

STAT AV STAT AV

SAMPLE_VALUES <>

MEAN

STD DEV

NORMAL DISTRIBUTION

I
NORMAL

VARIABLE X

T
SAMPLEVALUES

MEAN

POISSON DISTRIBUTION

POISSON

VARIABLE X PARAMETER

(b) DATA FLOW DIAGRAMS

FIGURE 77. (CONTINUED)

157

Begin pseudo code for Procedure STAT_AV

Receive sample's set of sensor readings and the
indication of the requested distribution

Calculate mean for sample
Calculate variance for sample

Call Procedure SQRT
to calculate square root of
the variance (standard deviation)

if DISTRIBUTIONJCIND - NORMAL then

Call Procedure NORMAL to establish
normal distribution

Package EXP_PL3A

elsif DISTRIBUTIONJCIND - POISSON then

Call Procedure POISSON to establish
poisson distribution

Else establish error message for incorrect distribution

end if _______^___________^_____^_^_____^_^__^_____

End pseudo code for Procedure STAT AV

(c) PSEUDO CODE FOR THE BODY OF PROCEDURE 'STAT_AV

FIGURE 77. (CONTINUED)

158

TYPES

1. SAMPLE_VALUES_TYPE

2. DISTRIBUTION_KIND_TYPE

3. STAT_FACTOR_TYPE

4. DISTRIBUTION_VALUES_TYPE

VARIABLES

1. SAMPLE_VALUES

2. DISTRIBUTION_KIND

3. MEAN

4. STD_DEV

5. DISTRIBUTION VALUES

STAT AV

EXP PL2 B

TYPES

CONSTANTS

VARIABLES

1 2 3

III
RL RL RL

1 2

II

12 3 4

DDDD
RL I RL RL

12 3 4 5

T1 T2 T3 T3 T4

o

A

12 3 4

TYPES

VARIABLES

TYPES

1. DISTRIBUTION_TYPE

2 VARIABLE/TYPE

3. PARAMETtER_TYPE

CONSTANTS

1. STAT_CONST_1

2. STAT_CONST_2

VARIABLES

1. NORMAL_DISTRIBUTION

2. POISSON_DISTRIBUTION

3. VARIABLEX

4. PARAMETER

(d) DATA STRUCTURE DIAGRAM

FIGURE 77. (CONCLUDED)

159

4 CHAPTER SUMMARY

SHARP establishes a set of pictorial abstracts that can be used to repre-
sent an object-oriented design for an Ada computer program. With such a
design, we can compose a large and complex computer program with manageable
pieces. More importantly, we can localize design complexity, reducing
interdependence relationships and thereby facilitating cost effective
software development and maintenance.

At the highest level of the design, SHARP abstracts represent Ada tasks
declared in the main procedure to establish the program's concurrent
processing threads (processes). At the next level, the abstracts represent
Ada packages and tasks introduced to encapsulate objects that implement
each thread's processing requirements. The interaction of the object
implementations is represented by SHARP Invocation Diagrams. The complex
bodies of program units responsible for communication between object
implementations, visible within a package encapsulating an object, can be
represented by SHARP Hierarchy and Invocation Diagrams. Abstracts envi-
sioned as "blow ups" of entities identified in an invocation diagram can be
used to represent details of task rendezvous, data flow between program
units and data structures. The later diagram shows information hiding
within data structures local to objects. At the lowest level of SHARP,
annotated pseudo code is used to represent operations and logic within the
bodies of individual program units.

Reviewing the design of a large computer program (i.e., 200,000 lines or
more) is a massive, time consuming and potentially error prone process. An
Ada computer program of that magnitude represented exclusively by compre-
hensive PDL would provide a very large document, perhaps "several feet
thick," which would be very difficult to comprehend. SHARP provides
abstracts that selectively present levels of design detail that would
enable the development team of systems engineers and software engineers to
communicate among themselves and with government reviewers, at different
levels of abstraction. Abstraction is essential in the management of
complexity. SHARP abstracts allow concise communication of relevant detail
in the form of pictographs that capture the essential program structure.
The annotated pseudo code option gives remaining detail to those personnel
who need it.

160

CHAPTER V

SHARP IN DoD SOFTWARE DESIGN DOCUMENTS

This chapter describes the use of SHARP within software design documents to
represent the structure of an Ada computer program to be implemented in an
object-oriented manner. Specifically, graphics are described for a
Software Top Level Design Document prepared in accordance with DI-MCCR-
80012 and a Software Detailed Design Document prepared in accordance with
DI-MCCR-80031. These documents are associated with the development of
software per Department of Defense (DoD) requirements specified in
DOD-STD-2167.

DOD-STD-2167, entitled "Defense System Software Development," is the
military standard fundamental to defense system software acquisition. It
defines phases of a computer program's life cycle, reviews of computer
program development held by the government during the life cycle, and
products that must be delivered by a contractor to document the computer
program and its development.

Computer software developed in accordance with DOD-STD 2167 is assigned to
one or more Computer Software Configuration Items (CSCIs) (formerly
referred to as Computer Program Configuration Items or CPCIs). Each CSCI
is developed over the six phases shown in Figure 78.

As shown in Figure 79, in addition to source and object code, twenty-four
principle products are developed to document software plans, requirements,
design, test consideration and manuals. These products must adhere to
requirements specified in the specific Data Item Descriptions (DIDs)
indentified in the figure. The products provide documentation needed by
the government (a) to verify that the software adheres to contractual
requirements, and (b) to maintain the software after delivery by the
contractor.

1 INTRODUCTION

1.1 BACKGROUND

In 1977, the Joint Logistics Commanders formed the Computer Software
Management Subgroup. In 1979, they decided at the Monterey 1 Software
Workshop that tri-service software standards and data item descriptions
(DIDs) were needed to standardize the DoD software development process
among the three services. This objective was met on June 4, 1985 when the
DoD released the following set of software development standards (SDS):

• DOD-STD-2167, Defense System Software Development

• MIL-STD-483A, Configuration Management Practices for
Systems, Equipment, Munitions and Computer Programs

• MIL-STD-490A, Specification Practices

161

5 —
.9 T3 _

O m II c i =. s c aj 5 5
9 oc .a> •§

§1
2 °

ci
lic

at

es
ig

n
n

R
ev

ss

 R
e'

5 <5
.9> 3
c 9>

OJ Q O) 0) ,9 c

w
ar

e
S

p
lim

in
ar

y
ic

al
 D

es
i

t R
ea

di
n O o

.2 o
*- m .t= en c >- o c c uj ^ .c MO-Oi- li 0.

II II II H II II

rr rx rx cc < <
oiQOino
WQ.OI- LL Q.

o
O

z
to t-
(J co

LU
K

z
o
<

o z
cc H
o to
HI LU
t- 1-
z Q ~~ Z o <
CO
o

Q o
z z
< H
o
z LU

Q K
O
O Z

3

Q
LU Z
_l o
< co
1- LU
LU o
Q

>
rx
< z z o
1 CO
_i LU
LU Q
rx
S.

CO
1-
z
LU CO

5
LU
rx

co >
-J <

D z
o <
LU
rx

< <
u. rx

cc
DC

CC
Q
o

Q
0.

o
CO
LU
CO

S
Q- »
LU
rx
<

u.
00

O LU
00 >
5 LU
LU rx
t- _i
00 >
00

<
5

LU
O0

rx
O

z u.
LU Q
U-
UJ

Q
Z
<

% 1-
CD

z
LIJ

5
Q.
O

CC
CO
00

00
Q
O
Q

LU
rx

LL

162

apoQ iD3(qo pue 33Jnos
<
(J
OL

(aoa dns poiej63iu| ssajnossy duioo) OSIU3 VZ008 2 a
a. u

(luaturooa idaoutrj leuouejado) QOO EZ008
a:
CO
to

1*

to
3
C
CO

5

(|enuevM uoddn$ ajewujji-j) Y\|Sd ZZ008
. OC

8 • • •
(lenuei^ s.jaujujej6oJd aje/vujog) WdS IZ008 8 • • •

(lenueyg 3!»sou6eta uiajsAs jawdiuoo) i/\|OSD 0Z008 9 ° • a- o w

(lenueyy s.issn aJB/wjjos) KIDS 61008 o 5 m
0. o •

(|snuey\| s.joiejado -$As J3»ndtuoo) W0S3 81008 a a • <->

8

(uodaa »J3l 3.ieMijo$) HJ.S £1008 <
u

(ajnpaoojjj isax 3JB/W»JOS) dlS
• 91008 • •

(uoiiduosaa >J3X SJSM^OS) QiS 91008 ft
Q

_ <J

(ueu »sai ajBwijos) dlS M008 o
a.

c
at

a>
O

(juauinooQ uoijdijasaQ UOISJBA) OOA £1008
 < —

o
a.

(uoiiesjjjsads jonpojj ajewi^os) sdS 6Z008 <
o
a.

(luauinooQ u6i$3Q aseg t»ea) 0080 8Z008
it

(luaiunooQ ufmoa saejjaiui) 001 £Z008
a.

* 8
(juauinDog u6iS3Q poijeiea SJBMUJOS) OOOS LE008

u
(luaiunooo u6(S30 |3A3T-doi sje/wijos) 0011S ZL008 o:

a a,
(icnueini ssjnpaDOJj pue -sp»s SJBMJJOS) lAldSS U008 • • • • •

H

K

(uoi>eoiji33ds siuauiajinbau aoejjaiui) sal 9Z008
it
V)
oo

[uoneoijiDads siusuisjinbsy 3JBMI}0S) SHS SZ008 (t •
CO w

c
a.

(ue|d uoiieniCAg A»i|eno aJB«u>os) d3DS 01008

(ueid »uauja6euen\| 6|juoo 3JB«UJ,O<;) dIAJDS 60008

(ueid iuauido|3Aao BJB/WIJOS) <IQS 0E008 • • • • •
uoaeaijpads »u3uj6as/ui3jsAs) SSS 80008

«
0
u>
m
n
(J

c •
E
3
Q
O a

u.}2
< UJ

i
u

_ u •
Q 5

5
1

R
eq

ui
re

m
en

ts
 A

na
ly

si
s

5
2

P
re

lim
in

ar
y

D
es

ig
n

5
3

D
et

ai
le

d
 D

es
ig

n

5
4

 C

od
in

g
&
 U

n
it
 T

es
t

5
5

 C

S
C
 I

n
te

g
ra

ti
o

n
 &
 T

es
t

5
6

C
S

C
I

Te
st

in
g

\

S

O
FT

W

\

D
O

C
U

M

S
O

F
T

W
A

R
E

 \

A
C

T
IV

IT
IE

S

\

u
o

c iL
4) O)

E i
3 O
u —
° "5 •o 3

"o z
c "

> c
•o .2

s
o .5
ia I

! £

E E
•O Si
•3 3

oo oo

CO
UJ
to
<
X
Q.

>

s
UJ

oo
LU
Q
Q
2
<
oo

s
D
Q
O
cc
a
UJ
CC

<

u-
o
CO

UJ
CC

O

163

• MIL-STD-1521B, Technical Reviews and Audits for Systems,
Equipment and Computer Programs

• An integrated set of related data item descriptions (DIDs)

DoD had already decided by 1977 to fund the development of a new high-order
language called Ada for the implementation of DoD mission-critical software.
The develop of Ada had commenced in the middle 1970s. It was completed in
the early 1980s.

In 1983, Ada was granted American National Standards Institute (ANSI)
standardization and its definition was formally documented in
ANSI/MIL-STD-1815A.

Thus, the new software development standards and the Ada language were
developed over the same time period. Unfortunately, these efforts primarily
proceeded independently of one another. During SDS review cycles, Ada-
related input was minimal. For example, the Council of Defense and Space
Industry Association (CODSIA) reviews of SDS did not directly involve
either the Association for Computing Machinery (ACM) or the Special Inter-
est Group Ada (SIGAda).

Nevertheless, DoD has mandated that all new embedded computer programs for
mission critical systems must be written in Ada and is also mandating the
use of DOD-STD-2167. Other governmental agencies, such as NASA and the
FAA, have accepted or are seriously considering the use of both Ada and
DOD-STD-2167.

Since the development of Ada and DOD-STD-2167 were essentially independent,
explicit and implicit inconsistencies between them are likely. As might be
expected, the graphics suggested in design-related DIDs of SDS do not
effectively represent Ada-unique designs.

To resolve this problem, the graphics of SHARP can be used to uniquely
represent Ada computer programs in SDS design documentation.

1.2 CHAPTER SCOPE

This chapter discusses the use of SHARP in design documentation prepared in
accordance with SDS. Section 2.1 addresses a Software Top-Level Design
Document (DI-MCCR-80012) and Section 2.2 addresses a Software Detailed
Design Document (DI-MCCR-80031) . Discussion applicable to the latter is
presented in the context of both traditional and object-oriented designs.

2. APPLYING SHARP SOFTWARE DESIGN DOCUMENTS

Block diagrams have been used to represent the architecture of computer
programs designed in a conventional manner. For example, Figure 80 shows a
CSCI architecture diagram provided in Figure 1 of DI-MCCR-80012, "Software
Top Level Design Document."

164

We feel that such a conventional block diagram does not effectively repre-
sent the structure of a computer program to be written in Ada. It does not
specifically represent Ada subprograms, tasks and packages -- the basic
architectural building blocks of an Ada computer program. Nor does it
account for concurrent program unit execution using Ada tasks, or
rendezvous between tasks. Also, it does not directly represent unique
capabilities of Ada used to implement object-oriented designs, such as the
encapsulation of program units in packages. The use of packages to hide
information is fundamental to software implementation in Ada.

2.1 APPLICATION OF SHARP IN SOFTWARE TOP-LEVEL DESIGN DOCUMENTS

2.1.1 Sample CSCI Architecture Diagram

DI-MCCR-80012 specifies requirements for a Software Top Level Design
Document (STLDD) in which the structure of a Computer Software Configura-
tion Item (CSCI) is documented. For Top Level Computer Software Components
(TLCSCs) paragraph 10.2.5.1 of DI-MCCR-80012, in part, states:

"The relationship among these TLCSCs and critical lower-level
computer software components (LLCSCs) and units, if known,
shall be described. The CSCI top-level architecture diagram
(see Figure 1)."

The figure referenced is provided in Figure 80. We feel this representa-
tion has several significant shortcomings. Not only does it not account
for Ada-unique program units, it also does not represent the process
abstraction aspects of a high level Ada design.

As discussed in Chapter I, an Ada designer uses process abstraction to
design a large and complex Ada computer program. In a computer system,
resident software typically has to satisfy multiple demands. For example,
user commands and communication interface requests may simultaneously
compete for a computer's processing time. A computer program must respond
in a timely manner to the commands and requests, even when they are
received at about the same instant in time.

With languages such as FORTRAN, the threads of nested program units are
assigned to processes and execute concurrently under operating system
control. An Ada designer implements each thread within the body of an Ada
task, declared in the main program.

Figure 81 provides an example of the SHARP tasks nested in the main program.
It indicates the external entities serviced by the tasks including communi-
cation links, multiple terminals, and work stations.

The diagram also represents access to Ada packages through the Ada "with"
clause. Specifically, the main program accesses package TEXT_I0_P1, to
provide general purpose I/O capabilities.

The diagram intentionally does not show the structure of each TLCSC Task.
The structure may consist of program units interconnected in a traditional
top-down manner, as discussed in Section 2.2.1. Alternatively, especially
if large and complex, requirements to be implemented in a TLCSC task may be
distributed among objects and implemented in an object-oriented manner, as
discussed in Section 2.2.2.

165

1
cc
o
<
5
cc
3

LU

h
I
U
cc
<

<
2
o
h
2
LU

>
2

8

M

X
I

CO

UJ
cc
3
2
u.

t -

b a
y: "-1

^ X _ > *>
V V

a
I? •*
.5 3
— —

•Si
J
w

S *» w
ii

Z Z! 2 •

i r

166

COMM
LINK

TERMINALS

4C=3k

WORK
STATION

A

WORK
STATION

8

II 1 — 1 —

B L I

TI.CSC3 TLCSC 32

TEXT_I0_P1

z:
MAIN

CSCI 3
WS_B

TI.CSC 33 Tl CSC U

MICROPROCESSOR A

FIGURE 81. SHARP REPRESENTATION OF A CSCI

167

2.1.2 Sample Diagram for Control and Data Flow Between TLCSCs

Paragraph 10.2.5.4 of DII-MCCR-80012, in part, states:

"A control flow diagram between TLCSCs may be used to illustrate
top-level execution control. An example of a control flow
diagram between top-level TLCSCs may be used to illustrate top-
level data flow. An example of a data flow diagram is provided
in Figure 3."

The first figure referenced is provided in item a Figure 82. The second
figure referenced is provided in item b. We feel these figures do not
effectively represent the interaction of TLCSC tasks, which establish
processes in the high levels of an Ada design. The interaction of tasks is
accomplished via a task rendezvous. In a task rendezvous, a caller task
initiates the rendezvous while the callee (or acceptor task) consummates
the rendezvous.

SHARP provides a specific graphical representation of Ada task rendezvous,
as discussed in Section 2.4.3 of Chapter II. Figure 83 provides an example
of the SHARP representation of TLCSC task rendezvous.

2.2 APPLICATION OF SHARP IN SOFTWARE DETAILED DESIGN DOCUMENTS

Paragraph 10.2.5.3 of DI-MCCR-80031, in part, states:

"This subparagraph shall describe the decomposition of TLCSC
W into LLCSCs and Units. This description may be provided
by a TLCSC decomposition chart (or a series of charts).
Figure 1 is an example of a TLCSC decomposition chart."

The figure referenced is provided in Figure 84. We feel that this figure
does not effectively represent the decomposition of a TLCSC, regardless of
whether it is constructed using traditional techniques or object-oriented
techniques. Not only does it not account for Ada subprograms, it does not
represent information hiding in packages and tasks, which is basic to soft-
ware implementation with Ada.

2.2.1 Sample Diagram Applicable to Decomposition in a Traditional Manner

When a TLCSC is decomposed using traditional techniques, a designer
typically will abstract the implementation of applicable requirements in a
top-down manner. For example, a relatively small and easily comprehended
portion of the requirements can be implemented at one level, with the rest
of the requirements implemented at other levels.

Using this approach, the body of each TLCSC task, activated in procedure
MAIN to account for a process, is abstracted by constraining the amount of
detail, within it to an easily understood amount. Excluded detail can be
passed to the bodies of called program units. The called program may be
contained in an Ada package, which is made available though the use of the
Ada "with" clause.

168

r . '£
1 w /
1 '"*' ^>
1 ^
5

I —
0» • —

o- l s
— , 2
w 1 "•
•r. (Z
w 1 ^
•fa ' w

^ 7
<- i (/: »2

| i k
m
w
X.
w

4 1 t

%r
—1 £ ._ .>. fl ^ ,. *S ^^
i- S w <
*" » w £

5: =
w -

= I
Z
"•»

> k 1

<
w 2 s g

acz ^
2* I- UJ
fc" z
-2

o

s

o

1 ^ II" 22
— | 2

5 z •fz
i5 1 ^

z ^ <
~ z z ^^

w -w 1 £
3? y; *

' r ' z
1

' l s8
1 —•

I
5
Z
LU
CO
LU
cc
Q.
LU
O.

o
8

<C UJ
Z UJ

2 £
CO

Z
UJ

ii
O -i
U u.

Q
z
<
_1

o
oc

Z
O r*
O <°
LL <N

O Q

Is
z z
UJ —
CO Q
UJ QJ

O- CO
UJ LU
cc o
_i o
< 3
z "»
o 5
12
> <
z t- o <
O Q

0
—

Sstsi
i= < *• 7
3 5 2 z

i|A z =
z I ! ± s

00

LU
S

o

-1

30

I

M

169

i k__
V
— A **•
s. s
•~t

_

0k •i •** M — s
s. w
•J- o mn

o- *0 •< —
•~* s. C < y. s. s. "—
w -i- Id < — z 'j.

—1
mm

•"-'

v.

W *rt

>n ° T UJ
•-> <-. *> lv

'O.T L. •<
3: ** , X. —

w £ • y -
_ ^"r< — u _ z H (-

"•" Z

J k i k

*•", u
t St

• 5 M

7. J •

>^ 2

s.
• if

•

— -J-

"» w
w <
•r. it

•"

—• -A.

H H
Z

I k

V« « -«~« < -» — a
w o ^ 3 5 35 5 Z
Lb

(D
A

T
A

K

S
l(

O

N
D

II
IO

w

< Q
Q D
Li. _J

o CJ
z

Z o o o
t-
< •
Z 00

LU LU
(0 DC
SJ <3 3

&8 LL
c i-

Z UJ
0 g
t- P
z w
w co
> 5
z o
8i

50
I

1) -

-
-x

170

00

UJ

a
2
UJ
cc

<

o
co
U

o
2
O

2
UJ
to
UJ
CC
CL
UJ
<r
o.
cc
<
x
00

CO

cr

U-

171

TLCSC31

LLCSC310 LLCSC311

LLCSC
| 3100

I MT
31000

IMT
31001

FIGURE 84. CONVENTIONAL TLCSC DECOMPOSITION CHART

This diagram is Figure 1 in DI-MCCR-80031

172

The deferred bodies of the called program units can be designed subject to
the same constraints that applied in the design of the task's body. There-
fore, these bodies are also constrained to an easily understood amount of
detail, with lower detail moved again to called program units.

A possible Ada-unique structure for the set of program units identified in
Figure 84, is shown by the SHARP Hierarchy Diagram in Figure 85. A SHARP
Hierarchy Diagram is described in detail in Section 2.3.1 of Chapter II.

Figure 86 illustrates an associated SHARP Invocation Diagram, which is used
to show the sequence of calls for the program unit identified in the
hierarchy diagram, and program units visible in packages to be accessed
using the Ada "with" clause. A SHARP Invocation Diagram is described in
detail in Section 2.3.2 of Chapter II.

2.2.2 Sample Diagram Applicable to Decomposition in an Object-Oriented
Manner

Requirements for a TLCSC task can be distributed among objects and imple-
mented in an object-oriented manner. Each object has a set of operations
unique to it and a local state defined in a data structure. The implemen-
tation of the set of operations is not accessible by other objects. With
Ada, each object can be implemented in Ada program units encapsulated in an
Ada package. In consideration of terminology established in DI-MCCR-80031,
these packages are designated as Top Level Computer Software Components
(TLCSCs). Access to each object can only be made via calls to procedures
in TLCSC packages.

SHARP can be used to represent this object-oriented approach to the
decomposition of a TLCSC task, as shown in Figure 87. In this figure,
TLCSC packages encapsulating the implementation of object requirements are
shown. In Figure 88, the internal structure of program units visible in
the TLCSC packages are shown. The use of SHARP in this way to represent an
object-oriented design is discussed in detail in Chapters II, III and IV.

3. CHAPTER SUMMARY

SHARP abstracts can be effectively used in a Software Top Level Design
Document (DI-MCCR-80012) and in a Software Detailed Design Document
(DI-MCCR-80031) to graphically represent the design of an Ada computer
program. In this manner, inconsistencies between the graphics appropriate
for traditional designs and graphics appropriate for Ada-oriented designs
are removed. In particular, the SHARP abstracts can be introduced into a
Software Detailed Design Document to represent an object-oriented Ada
design. This is especially significant since it is expected that object-
oriented techniques will be widely used in conjunction with reusable
software components, in the implementation of large and complex Ada com-
puter programs, with significant software development cost savings pro-
jected.

173

FIGURE 85. SHARP REPRESENTATION FOR A TLCSC TASK
HIERARCHY DIAGRAM

174

IMT
31101

l.MT
Jl too

TLCSf 310

FIGURE 86. SHARP REPRESENTATION FOR A TLCSC TASK
INVOCATION DIAGRAM

175

TLCSC 310

LLCSC 310

TLCSC 311

LLCSC311

TLCSC 3110

(a) LLCSC ADA PACKAGES USED TO IMPLEMENT OBJECTS

TLCSC 310
TLCSC 31

•

LLCSC 310

TLCSC 311

LLCSC 311

(b) INVOCATION OF LLCSC ADA PACKAGES

FIGURE 87. SHARP REPRESENTATION OF TLCSC ADA PACKAGES
{OBJECT-ORIENTED DESIGN)

176

(A

u
(A
U

£. —

2 -

Z —

s.

I- —
— ©

u
u 2

71

oo

X
LLI
_l
Q.

o u z
_i o

% »- z <
UJ z
t- UJ

z 5
UJ _j

I CL
*- 5
li= = o

03
00

UJ
EC
3
O

CO
O

177

CHAPTER VI

Testing Object-Oriented Ada Software

This chapter describes a systematic approach to testing an Ada computer
program that has been designed in an object-oriented manner. Object
implementations can be tested by verifying that their responses to environ-
mental stimuli are correct. To comprehensively test the implementations,
the environmental stimuli should establish both nominal conditions and
conditions that stress their interaction.

In order to facilitate such testing, we describe basic Ada test packages
that can be introduced to simulate environmental stimuli and to record
parameters passed from one object to another. These test packages provide
the framework for verification of object interaction at a high level,
suitable for government formal test of Computer Software Configuration
Items (CSCIs) established in accordance with DOD-STD-2167.

This chapter also addresses lower level testing, which typically precedes
the high level testing or is introduced to assess problems revealed by the
high level testing. Lower level tests check the performance of the
implementation of each object individually.

For both the high level and lower level testing, we describe the use of
SHARP abstracts to explicitly represent test software and its interaction
with the operational software to be exercised. We illustrate that SHARP
diagrams are effective, both to indicate high level tests of object inter-
action and lower level tests of program units used to implement the complex
requirements assigned to an object.

This chapter demonstrates that the testing of software designed in an
object-oriented manner can be explicitly represented using SHARP abstracts.
Such a pictorial representation significantly helps us comprehend the scope
of tests being undertaken.

1. INTRODUCTION

1.1 BACKGROUND

The localization of design complexity is the important feature of an object-
oriented design that simplifies testing during software development and
maintenance. With the localization of design complexities within object
implementations, and the establishment of straightforward interfaces
between the implementations, software testing becomes relatively straight-
forward and easy to undertake in practice. This is because undesirable
dependency relationships within a computer program have been constrained.

In the past, global parameters and routines were shared among .many program
units. If during testing any one of the global parameters or routines were
modified to correct an error, the change could adversely affect several
different parts of the computer program. When one error was corrected by a

179

change, several others often were introduced. Seemingly innocent changes,
at times, caused serious problems. However, by localizing design com-
plexity with an object-oriented design, the effect of a change is trapped
within the implementation of an object itself.

In Ada, packages are important to the implementation of object-oriented
designs and the testing of the implementations. Only program units
declared in a package's specification can be directly accessed. Operations
and data can be hidden within a package's body, where they cannot be
directly accessed by program units in other packages. Thus, an Ada package
is an ideal program unit for encapsulating special test software and an
object implementaion.

1.2 CHAPTER SCOPE

In this chapter, a systematic approach to testing object-oriented Ada
software using special test software is described. High level and lower
level tests are identified. Special test software is identified and
described. The representation of the special test software and its
interaction with object implementations is graphically represented using
SHARP abstracts.

2. TESTING A COMPUTER PROGRAM IMPLEMENTED IN AN OBJECT-ORIENTED MANNER

In the development of object-oriented software, a team of programmers will
develop software needed to implement requirements assigned to individual
objects. This team must extensively test the implementation of an
individual object and verify that integrated object implementations perform
correctly. Then, the programming team typically will turn over the soft-
ware to a test team.

The test team will execute the software in conjunction with system
hardware. It will run tests designed to verify that the integrated object
implementations satisfy predefined requirements. If incorrect performance
is detected, the software must be returned to the programming development
team.

The programming development team must run new tests on the individual
object implementations (e.g., enhancements of their previous tests) to
determine the implementations not performing correctly. Once a faulty
object implementation has been detected, its internal structure must be
tested to isolate faulty program units within it and the incorrect code
within the faulty program units.

This section discusses the ramifications of such testing of object-oriented
software. Specifically, paragraphs in Section 2.1 consider high level
tests of object interaction and paragraphs in Section 2.2 address low level
tests of the implementation of a single object and its internal structure.
In both cases, SHARP abstracts are used to represent special test software
and its interaction with Ada application software.

180

2.1 HIGH LEVEL TESTS OF THE INTERACTION OF OBJECT IMPLEMENTATIONS

For a large and complex Computer Software Configuration Item (CSCI) to be
implemented in Ada, an object-oriented approach to design is expected to be
widely applied. DOD-STD-2167 and its companion test unique data item
descriptions (DIDs), describe government requirements for testing the CSCIs
and test documentation that must be prepared. Specifically, the following
documents must be prepared as part of the formal test of a CSCI:

• Software Test Plan (to define the scope of testing per
DI-MCCR-80014)

• Software Test Description (to identify input data, expected
output data and evaluation criteria per DI-MCCR-80015)

• Software Test Procedure (to describe test steps, expected
results for each step and test data sheets per DI-MCCR-80016)

• Software Test Report (to document test results and provide
an analysis of CSCI performance, including any detected
deficiencies, limitations or constraints, all per DI-MCCR-
80017)

Testing of a CSCI an be envisioned as a mapping of software requirements
specified in a Software Requirements Specification (DI-MCCR-80025) into
test stimuli for a set of test cases. When a large and complex CSCI
consists of several interacting object implementations, the test stimuli
are used to exercise the set of implementations under both nominal and
stress conditions. In addition, spectrum of tests can be performed on
critical implementations, to the extent time and money permit. The
performance of the object implementations is measured by recording
parameters passed between the implementations and the process tasks
declared in the main program. The recorded data is compared to expected
values, either directly or after data reduction.

This section discusses such testing of object implementations in Paragraph
2.1.3. As a prerequisite to this discussion, it describes in Paragraph
2.1.1 basic concepts for object implementation in Ada; and describes in in
Paragraph 2.1.2 special Ada-unique test packages introduced to generate
test stimuli and record information being passed between object packages.

2.1.1 Layers of Object Packages

Grady Booch suggests that a large software system should be built with
layers of abstraction. 6 He feels that each layer should account for one or
more objects.

With SHARP, abstracts can be used to represent the layers of packages and
tasks typically used to implement objects. For objects implemented using
packages, the SHARP Ada Package Content Diagram (Option B in Chapter II)
can be used to represent the package layers, as illustrated in Figure 89.

181

PU_P1

P1

P2

PU_P2a PU_P2b

P2

P3

PU_P3

P3

P4

P5

PU_P4

P4

PU_P5
P2

P5

FIGURE 89. LAYERS OF ADA PACKAGES

182

Program units declared in the specifications of packages facilitate inter-
faces between the packages. The information transfer between these program
units establishes object interaction. This interaction can be represented
in a SHARP Invocation Diagram. As shown in Figure 90, a designer will
typically require the highest level object implementation, of a set of
layered implementations, to interact with a task declared in the main
program. This task acts as a substitute for a process directly controlled
by an operating system, which is the technique used to facilitate for
real-time control with a language like FORTRAN. The task provides a
dynamic interface with environmental entities external to a computer (e.g.,
an interface with a work station, terminal or communication link), as
discussed in Section 3.1 of Chapter I.

2.1.2 Special Test Software

Special test software can be introduced to verify the correct performance
of object-oriented Ada software. With SHARP, the special test software can
be shaded to distinguish it from applications software, as illustrated by
the SHARP diagrams provided in this section.

2.1.2(a) Test Driver Package

As part of the framework for the testing of object interaction, an Ada
package can be introduced to generate test case stimuli. Using this
package, various test cases can be initiated under operator control. A
task declared in the specification of this package can stimulate
environmental stimuli. Utilizing task rendezvous, it can pass this
stimulate to the environmental interface task, as illustrated in Figure 91.

Since the interaction of object implementations may be conditional, only a
subset of the implementations may respond to stimuli produced for a parti-
cular test case. The subset of objects exercised during a particular test
case can be shown in bold face, as illustrated in Figure 92.

2.1.2(b) Environmental Simulator Package

To test object interaction in a more realistic and dynamic manner, an Ada
package can be used to encapsulate Ada program units that generate a
sequence of stimuli over time. An Ada task declared in the specification
of this package can interface with visible program units in object
implementation packages, and can respond to feedback received from the
object implementations under test, as shown in Figure 93.

The environmental simulator package is initialized by a tester to establish
the sequence of stimuli to be generated. During test execution, it typi-
cally performs independent of the tester.

2.1.2(c) Data Recording Package

In conjunction with a test driver or environmental simulator package, a
data recording package can be introduced to record parameters passed
between object implementations. This can be accomplished with a set of
program units that are called just prior to the passing of data. The

183

FIGURE 90. OBJECT INTERACTION

184

TESTERS
TERMINAL

, I K

TEST DRIVER

MAIN

* • • Olher Processes

Process under test

OBJECT_P1

P!

OBJECT_P2

P?

I
OBJECT_P3

OBJECT_P4

PA

OBJECT_P5

PS

FIGURE 91. TEST OF OBJECT INTERACTION WITH A TEST DRIVER

185

TESTERS
TERMINAL

TEST_DRIVER

MAIN

• • Other Processes

Process under test

OBJECT_P1

Pi

OBJECT_P2

P2

OBJECT_P3

*
P3

OBJECT_P4

P4

OBJECT_P5

K

P5

FIGURE 9 2. REPRESENTING TEST OF A SUBSET OF OBJECTS

186

Generate dynamic stimuli
and respond to objects

OPERATIONAL_SOFTWARE

Main Program

• Other Processes

Process under test

ENV_SIM

FIGURE 93. TEST OF OBJECT INTERACTION WITH AN ENVIRONMENTAL SIMULATOR

187

specification of these program units must be identical to the interfacing
program units that facilitate data passage. The bodies of these program
units establish a record of data being passed and the time of the passage.

The introduction of such recording program units is illustrated by the
SHARP pictographs in Figure 94. As shown, the call to a recording program
unit may be made conditional. In this way, appropriate conditions can be
established prior to test execution, defining what data passage is to be
recorded and what data passage is not to be recorded.

2.1.3 Testing Object-Oriented Software

To test a set of objects, stimuli are introduced by the test driver package
(essentially for one test case at a time) or by the environmental simulator
package (for more complex dynamic interaction between the object
implementations and the environment external to them).

The stimuli introduced should relate to a complete set of nominal software
requirements. Nominal testing introduces stimuli and operating conditions
typical of those to be experienced by the software in an operational "real
world" environment. This testing is designed to exercise the software
under expected conditions, to ensure that all object implementations are
performing as required under such conditions.

Also, extreme values of the stimuli (e.g., sets of boundary conditions)
should be generated to stress the layered object implementations. Stress
testing introduces stimuli and operating conditions that will subject the
software to possible extreme conditions. This testing makes maximum,
overload or even erroneous demands on object implementations. It can
include simulated breakdown of interfacing hardware and other unexpected
conditions that could occur in the operational environment. Attention is
often given to unusual combinations of events that should have been antici-
pated in the object-oriented design. These extreme values of stimuli can be
generated by either the test driver package or the environmental simulator
package. Furthermore, the environmental simulator package can also stress
the layered object implementations with respect to the frequency at which
stimuli are presented to them.

In addition, if time and money are available, the set of object implementa-
tions can be further assessed by monitoring their performance over a
spectrum of tests. Such testing is especially applicable to critical
interaction of object implementations (e.g., objects associated with life
dependent events). Performance spectrum testing uses a large number of
test cases designed to exercise software over its full range of input
values. Analysis can be performed on the results to evaluate overall
behavior of integrated object implementations. Test cases are carefully
selected to incorporate both nominal and extreme conditions, and to include
as many combinations of representative input values as possible. Tests
results are analyzed, either manually or with the aid of statistical
analysis tools, to identify patterns, detect anomalies and biases in
overall results, and draw conclusions about program performance. Graphs
and tables of results typically are prepared to aid in the analysis.

188

R_a R_b R_c R_d R_e R_l

(a) Packages ENV_SIM and OBJ_REC

Package OBJ. REC

FIGURE 94. RECORDING DATA PASSED BETWEEN OBJECTS

189

OPERATIONAL -SOFTWARE

ENV-SIM

R_AI

OBJ_REC

s
"""-' ;JT

R_b •'

OBJ_REC-

"^
AmSMi

R...C .

OBJ_REC

R_d

OBJ_REC

Main Program

« Other Processes

Process under test

OBJECT_P2

P2

OBJECT_P3

OBJECT_P4 R_e;

OBJ-REC

P4

KR-FJ

OBJECT_P5

P5

OBJ_REC

(b) Introducing Data Recording Subprograms

FIGURE 94. (CONCLUDED)

190

Results may be used to identify special cases requiring additional testing,
to define the range of missions that can be successfully accomplished by
the object-oriented software, and to compare the performance of different
software versions.

2.2 LOWER LEVEL TESTS OF A SINGLE OBJECT IMPLEMENTATION

In the development of object-oriented software, object implementations are
tested individually and then integrated prior to formal testing. If during
trial runs of formal tests, incorrect performance is detected, lower level
tests of individual object implementations must be enhanced and repeated to
determine the reason for the incorrect performance.

Each object implementation can be individually tested to determine if it is
causing the poor performance. When a faulty object implementation is
detected, its internal structure can be tested to isolate faulty program
units within it. The faulty program units can, in turn, be tested to
finally isolate incorrect code. In this manner, problems can be systemati-
cally assessed and isolated.

2.2.1 Testing a Single Object Implementation as a Whole

To identify a faulty object implementation, each of a set of implementa-
tions must be individually tested. To test a single implementation, a
tester needs a test driver package and a recorder package. The complex
hidden structure of the object implementation along with the test driver
and recorder packages can be graphically represented in a SHARP Invocation
Diagram, such as in the manner shown in Figure 95.

Extreme values of stimuli can be generated to stress the object implemen-
tation. These stimuli can be introduced either statically or at high
frequency rates. Pictographs for the set of program units exercised in a
particular test case can be shown in bold face within the SHARP representa-
tion of the test case. As illustrated in Figure 96 for two of a set of
multiple test cases, a set of test cases is needed to exercise various
paths through the hierarchy of program units used to implement the internal
structure of a complex object. Within a SHARP Invocation Diagram, bold
face can be used to indicate program units exercised in a particular test
case.

2.2.2 Testing the Internal Structure of an Object Implementation

Once a faulty object implementation has been detected, its internal
structure must be exercised to isolate the problem. When an object itself
consist of a set of objects, the interaction of the internal implementation
of objects can be tested in the manner discussed in Subsection 2.1.

In practice, an object typically is implemented using several levels of
abstracted subprograms encapsulated in an Ada package (or task). Detail
contained within each subprogram's body is constrained to an easily
understood amount. Excluded detail is passed to the bodies of lower level
subprograms. These bodies are also constrained to an easily understood
amount of detail, with lower detail moved again to yet lower level
subprograms.

191

TEST DRIVER

P5

PROGRAM UNITS WITHIN
BODY OF PACKAGE

ENCAPSULATING
OBJECT

messages from olher
objects

OBJECT
UNDER
TEST

| """ generated by
object

IT)
PU-4b |PU_4c /PU_4d

s

'10

I

t
FIGURE 95. REPRESENTING TEST OF A SINGLE OBJECT

192

TEST DRIVER

• i i

**>!»

PROGRAM UNITS WITHIN
BODY OF PACKAGE

ENCAPSULATING
OBJECT

messages Irom other
obiects

OBJECT
UNDER
TEST

messages
generated by

obiect

P10 P15
(a) Test Case I

FIGURE 96. TEST CASES FOR TESTING A SINGLE OBJECT

193

TEST DRIVER

PROGRAM UNITS WITHIN
BODY OF PACKAGE

ENCAPSULATING
OBJECT

messages from other
objects

OBJECT
UNDER
TEST

messages
generated by

object

(b) Test Case II

FIGURE 96. (CONCLUDED)

194

Classical computer programmer testing can be used to test such sequential
subprogram interaction. Such testing can be accomplished using a debugger
and other test tools provided in an Ada Programming Support Environment
(APSE). For example, parameters passed between subprograms can be checked,
internal branching within each subprogram can be verified, and data gen-
erated in arrays or records can be checked.

The object may also be implemented using multiple tasks in addition to
several subprograms. The testing of task performance is not as
straightforward as the testing of subprogram performance, due to concur-
rency associated with task execution. Although classical techniques using
an APSE debugger can be applied to assess task performance to a certain
extent, other time dependent tests typically will have to be conducted to
check the temporal aspects of task execution.

To establish time dependent tests, the environmental simulator package can
be used to generate a sequence of stimuli in a predetermined manner and
over a specific time period. The faulty object implementation can be
tested in conjunction with other implementations and the performance of
tasks within the faulty implementation can be monitored.

Such monitoring can be accomplished using a test recording package to
record the values of parameters received by task entry points during
rendezvous. As shown in Figure 97, the recording package can contain a set
of subprograms. Calls can be made to the subprograms from the receiving
task, as part of the rendezvous accept statement. This is illustrated by
the following Ada code for the task rendezvous example shown in Figure 97.

task TASK_D;
entry ENTRY1: (PAR1

PAR2
entry ENTRY2: (PAR3
entry ENTRY3: (PAR4

PAR5
PAR6

in INTEGER;
in INTEGER)
in INTEGER)
in INTEGER;
in INTEGER;
in INTEGER)

end TASK D;

task body TASKD is

accept ENTRY1 (PAR1: in INTEGER;
PAR2: in INTEGER) do

REC0RD_ENTRY1 (PAR1, PAR2); -- Call subprogram to record
-- values of the parameters received by entry point ENTRY1
-- and the time they were received

end ENTRY1;

195

O
UJ
-3
CD
O
Z
<
>
CO
Q
UJ
10
CO
<
0-
5
o
o z
UJ
to

CO
<

IL o
I-
to
UJ

O)

UJ
cr

g
U.

196

accept ENTRY2 (PAR3: in out INTEGER) do

REC0RD_ENTRY2 (PAR3); -- Call subprogram to record
-- values of the parameters received by entry point ENTRY2
-- and the time they were received

end ENTRY2;

accept ENTRY3 (PAR4
PAR5
PAR6

in INTEGER;
in INTEGER;
in INTEGER) do

REC0RD_ENTRY3 (PAR4, PAR5, PAR6); -- Call subprogram to record
-- values of the parameters received by entry point ENTRY2
-- and the time they were received

end ENTRY3;
o
o
o

end TASK D;

Using this recording capability, a record of parameter values passed during
task rendezvous and the time of task rendezvous can be established. The
record can then be assessed to check the validity of parameter values
passed between tasks, and if they are passed in a timely manner, in compli-
ance with mission requirements.

As with other test data recording, the calls to recording subprograms can
be made conditional. In this way, the tester can establish the conditions
needed to provide test recording needed for the particular test case being
run.

3. CHAPTER SUMMARY

Ada computer programs that have been designed in an object-oriented manner
can be systematically tested. Tests can be conducted at a high level to
exercise interacting object implementations used to construct the computer
program.

If high level tests reveal poor performance, lower level tests can be
conducted on individual object implementations to identify faulty
implementations, and yet lower level tests can be conducted to isolate the
problem in the internal working of a faulty implementation. Changes
introduced to correct the faulty implementation will not affect other
object implementations that have been performing correctly, because of the
localized nature of operations and data bases unique to each object.

197

To provide a framework for such tests, special purpose Ada test packages
must be introduced to generate environmental stimuli and record parameters
passed between program units. For a particular test case, the specific
program units exercised, as well as the special test packages introduced,
can be clearly indicated using SHARP abstracts. These explicit pictorial
representations of testing significantly help in comprehending the scope of
the tests being undertaken. As such, they will be very helpful to
government reviewers of contractor testing activities.

198

CHAPTER VII

Estimating the Cost of Object-Oriented Ada Software

Existing cost models have been formulated for software designed in a
traditional manner, and therefore cannot be directly used to estimate the
cost of Ada software developed in an object-oriented manner. In this
chapter, an algorithm is established to directly project the cost of
object-oriented Ada-unique software. Cost factors within the algorithm are
projected using the Constructive Cost Model (COCOMO) but in a special
manner.

In addition, algorithms are established to project the size of the
implementation of an object-oriented Ada design. Factors in the size pro-
jection algorithm can be established by inspection of an object-oriented
Ada-unique design represented by SHARP abstracts. This is important since
the size of a program is a key input to cost/schedule estimation models.
The models can provide meaningful results only if the size metric is
accurately estimated.

The algorithms are applied to project the costs to implement a hypothetical
embedded computer program using Ada in an object-oriented manner. The cost
to implement the same computer program using FORTRAN and assembly language
is projected using COCOMO directly. The results indicate that when a large
and complex computer program is developed in an object-oriented manner
using Ada, significant cost savings can be expected relative to traditional
development approaches.

1. INTRODUCTION

1.1 BACKGROUND

1.1.1 Cost Savings Expected Due To Ada Standardization

In order to promote standardization, DoD has mandated the use of Ada in the
implementation of mission-critical software. Standardizing to a single
high-order language will contribute to lower software life-cycle costs.
For example, the use of many different languages necessitates the develop-
ment and maintenance of several different compilers and programming support
tools. With Ada as the standard computer programming language for DoD
mission critical systems, fewer compilers will have to be developed.

DoD has initiated an Ada compiler validation program to help ensure that
all features of the standard language are being correctly implemented by
various compilers. In time, proponents of Ada expect that a variety of Ada
programming support tools (e.g., editors and debuggers) will also become
available. DoD has taken steps to help ensure that tools that are not
architecture dependent will have general applicability to different
computing configurations.

199

In the long run, it is expected that Ada standardization will lead to labor
force savings since a large number of personnel will have on-the-job
experience using the Ada language and associated programming support tools.
These capabilities are expected to be essentially portable from one project
to the next, significantly reducing programmer training costs. The exper-
ience base of the DoD programming community will not be subdivided among
several languages.

1.1.2 Cost Savings Expected Due to Ada Technical Features

In addition to savings associated with standardization, proponents of Ada
expect that its technical features will also help reduce software
development costs. Several of these technical features, and their
graphical representation with SHARP, are described in Chapter II. For
example, in Section 2.2.1 of Chapter II, the use of Ada packages to
encapsulate reusable software (and represent them in an Ada Package Catalog
Diagram) is described. It is envisioned that software contractors will
construct and apply in practice a library of Ada packages for such things
as hardware drivers, communication protocols, high and low level I/O, math
functions and special purpose algorithms.

As another example, in Section 2.4.2 of Chapter II, the SHARP representa-
tion of Ada generics is described. With Ada generics, an existing Ada
package and its contents become more general purpose. For example, the
name of a generic subprogram, and typically the definition of its types and
the range of permissible values for passed parameters, are created during
compilation. (The process of creating a particular instance of the generic
program unit is referred to as generic instantiation.)

1.1.3 Cost Savings Expected Due to Object-Oriented Software Development

Possibly the most important technical features of Ada are its ability to
facilitate data abstraction and information hiding. These factors can be
used in the implementation of object-oriented designs, which provide a
means for controlling dependency relationships between variables, types and
program units.

The control of complex dependency relationships between variables, types
and program units with an object-oriented design is discussed in Section
2.1 of Chapter III in the context of software maintainability and in
Section 1.2 of Chapter V in the context of software testing.

The object-oriented approach is also critical to the development of Ada
software because of the complexities of Ada compilers, which make extensive
checks of the dependency relationships. Ada compilers are slow relative to
compilers for older languages (e.g., FORTRAN). With Ada, implementation of
objects are encapsulated in loosely coupled Ada packages and tasks, which
the development team can code and test independently. By constraining the
size of these object program units and stubbing program units interacting
with them, the Ada packages and tasks can be separately compiled and
recompiled in a timely manner during their development.

200

1.1.4 Accounting for Ada Savings in Cost/Schedule Estimation Models

In order to estimate the cost of Ada software developed using traditional
design approaches, an analyst can make use of existing models. They have
been calibrated for software implementations using the traditional
approaches, and account for the high costs incurred in part because of the
complex dependency relationships inherent in the traditional approach to
designing and implementing software.

However, the existing models cannot be directly used in the estimation of
software to be designed and implemented in an object-oriented Ada-unique
manner. Rather, a new model is needed that will take into account the cost
savings introduced due to control of the complex dependency relationships.

In addition, regardless of which model is used, the size of the program must
be accurately established, whether measured in terms of the number of source
statements to be delivered or in some other way (e.g., the number of
function points). Most models do not provide a mechanism for accurately
projecting the size of a computer program. However, by using SHARP
abstracts, such projections can be rapidly and accurately made.

1.2 CHAPTER SCOPE

In this chapter, we present a new model for projecting the cost to develop
object-oriented Ada software. In conjunction with this model, the
estimation algorithms of COCOMO are used in special ways to estimate cost
factors in the model. Section 2 describes algorithms associated with
Basic, Intermediate and Detailed COCOMO. Section 3 provides an algorithm
that projects the cost of object-oriented Ada software directly accounting
for the inherent cost advantages associated with this software. It
provides algorithms that can be used to project the size of the software
and discusses establishing other model inputs in a manner unique to Ada.
Section 4 provides an example of applying these the algorithms in practice.

2. OVERVIEW OF THE CONSTRUCTIVE COST MODEL (COCOMO)

2.1 INTRODUCTION

The Constructive Cost Model (COCOMO) is an empirical model used to predict
the cost of software development efforts. Data collected from sixty-three
projects at TRW, Inc. was used to formulate and calibrate COCOMO. This
section provides an overview of COCOMO. For a detailed description of the
model and its derivation, see Barry Boehm's book, Software Engineering
Economics.

2.1.1 Versions of COCOMO

Three different versions of the COCOMO model have been formulated. They
are referred to as Basic, Intermediate and Detailed COCOMO. Each version
predicts the cost of the software effort in units of manmonths, but with
different degrees of accuracy. Basic COCOMO predicts software development
cost as a function of the expected size of the software product measured in

201

source instructions. It is meant to provide a rough order of magnitude
estimates. When applied to the TRW, Inc. data base, it estimates software
development effort within a factor of 1.3, 29% of the time; and within a
factor of 2, 60% of the time.

Intermediate COCOMO predicts software cost as a function of attributes of
the product, computer, personnel and project, as well as the number of
source instructions to be developed. It can be used to estimate the
cost of the total software package or components of the total software
package. When estimating on a component by component basis, attributes
selected can vary from one component to another as appropriate. With
respect to the TRW data base, Intermediate COCOMO estimates are within 20%
of actual project costs 68% of the time.

Detailed COCOMO extends the Intermediate model by taking, into account
life-cycle phase dependencies of cost drivers.

2.1.2 Modes of Software Development

All three versions of COCOMO distinguish between three modes of software
development, differing in scope and intrinsic difficulty. The modes are as
follows:

• Organic mode (small to medium size in-house projects under-
taken by persons familiar with the application and experi-
enced in developing software for related applications)

• Embedded mode (projects developing a strongly coupled
complex of hardware and software that is difficult to change
or fix, consists of new architecture, and is tightly con-
strained by reliability, memory and speed of execution)

• Semi-detached mode (projects halfway between a familiar,
in-house organic project and an unfamiliar, innovative
embedded project).

2.1.3 Phases of Software Development

The phases of software development covered by each version of COCOMO
encompass:

• Product design specification

• Detailed design specification

• Code and unit test

• Integration and test

A separate formulation is provided to estimate the costs of maintenance
work. The specific activities accounted for in the model are shown in the
work breakdown structure shown in Figure 98.

202

— 8

ft I I

£

ill if I]
£ 51 if il

CN r> »
rv r-» r»

X X
CO CO

3 I
51

II

ft s

L I
2

i I

00
0 c

K!
8 I

£

16 J 8 I
SI 3s i
•- (N en

XXX
CO CO CO

>
> It I

6. Si S. S. 11

If I Is I J If
W T r<* (N N CM C*
^ <N (M CN CM <M „
*^- 'C X 3*s X X ^^

co co co w) co x

1

ii
X

i ~ a.
1 ' ° «'
1Q Xl

UJ
CC

UJ
X
<

u.
0

8
UJ

D
O

i I
Jisi 55 ? I

si

5 i
£ I
c ?
~ c

1 « E 2 i» 8 3 !£ o m o

X X
CO CO

4* J E

if;

u
• o
c
o
o
W

to
q

•i-i
M
OJ
0)
0

•H
M
c
W

))
M
n)
3

O

I

M

3,

u
BO
rj

•H
•a
H

203

2.1.4 Definitions and Assumptions of COCOMO

COCOMO defines delivered source instructions to include all source instruc-
tions translated by a compiler into machine code, excluding comment liner;
and lines of unmodified library software. Job control language, format
statements and data declarations are included in the instruction count.
Support software (e.g., test drivers) is excluded, unless it is to be
developed with the same care and documentation as the deliverable product.

Basic assumptions made by COCOMO include the following:

1) A manmonth consists of 152 hours of working time.

2) Project management undertaken by both developer and
customer is good.

3) The requirements specification is not substantially
changed after the plans and requirements life-cycle
phases.

2.2 BASIC COCOMO

2.2.1 Projecting Development Costs with Basic COCOMO

Basic COCOMO uses the following algorithm to estimate the effort to develop
software in units of man-months:

MM - K(DSI/1000)**E (2-1)

where values of the coefficient K and the exponent E are given in Table 2.
As indicated in this table, a unique value for K and E are selected as a
function of the software development mode (i.e., organic, semi-detached or
embedded).

TABLE 2 COEFFICIENTS AND EXPONENTS OF THE
BASIC COCOMO ESTIMATION ALGORITHM

DEVELOPMENT ESTIMATING
MODE DEVELOPMENT COST
 K E

Organic 2.4 1.05
Semi-Detached 3.0 1.12
Embedded 3.6 1.20

2.2.2 Projecting Software Maintenance Costs with Basic COCOMO

COCOMO assumes that the developed software product has been tested to the
point where only residual software bugs remain, bugs that were not revealed
by software testing undertaken during development. Once this software is
delivered to a user for site operation, maintenance of it is necessary. By
maintenance, COCOMO means the process of removing residual bugs while

204

leaving the primary aspects of the software intact. Therefore, maintenance
encompasses needed modification of the software product's code, documenta-
tion and data base structure associated with the software "repair." COCOMO
also includes in maintenance the update and redesign of small portions of
the software product.

The cost to perform this maintenance is estimated as a function of the
development estimate; and expected additions and projected modifications,
which are referred to as the Annual Change Traffic. The Annual Change
Traffic (ACT) is the percentage of the software product's source instruc-
tions that are projected to undergo change during a (typical) year. Basic
COCOMO estimates annual maintenance effort using the following equation:

MM(MAINT) - MM(DEV)*ACT (2-2)

where MM(DEV) is the development effort estimate in manmonths, established
using Equation 2-1.

2.3 INTERMEDIATE COCOMO

Intermediate COCOMO estimates software development cost as a function of
the size of the product and tha development mode, as does the basic model.
However, the Intermediate COCOMO estimate also accounts for attributes
characterizing the development effort.

2.3.1 Projecting Development Costs with Intermediate COCOMO

The estimation algorithm of intermediate COCOMO is as follows:

MM - (C * C * ... C15)K(DSI/1000)**E (2-3)

where the coefficient K and the exponent E vary as a function of the
development mode, as shown in Table 3. The coefficients C are functions
of attributes of the development effort:

C - f(A) (2-4)
n n

The first three attributes account for characteristics of the software
product. They are:

L. - required software reliability

A_ — data base size

A- - product complexity

The next four attributes account for the computer used. They are:

A. - execution time constraint
4

A,. - main storage constraint

A, - virtual machine volatility

A., - computer turnaround time

205

The next five attributes account for the development personnel. They are:

Afl - analyst capability

A_ - applications experience

A1_- programmer capability

A....- virtual machine experience

A1 „- programming language experience

The final three attributes are as follows:

A1 _- use of modern programming practices

A.,- level of tool support

A1,.- schedule constraint

TABLE 3 COEFFICIENTS AND EXPONENTS OF THE
INTERMEDIATE COCOMO ESTIMATION ALGORITHM

ESTIMATING
DEVELOPMENT DEVELOPMENT EFFORT

MODE K E

Organic 3.2 1.05
Semi-detached 3.0 1.12
Embedded 2.8 1.20

COCOMO requires the estimator to rate each attribute (e.g., very high,
high, nominal, low or very low) and provides a value f(A) as a function of
the rating. The meaning of each attribute rating and the associated values
for f(A) are provided in Appendix D.

2.3.2 Projecting Software Maintenance Costs with Intermediate COCOMO

Intermediate COCOMO derives software maintenance costs from software
development costs using Equation (2-2), in the same manner as Basic COCOMO.
However, the coefficient C. s is set to unity since it accounts for develop-
ment schedule constraints, which are not applicable. Also, C , which ac-
counts for software reliability and C._, which accounts for the use of
modern software practices, are given different values than those applicable
to development. These differences are explained in Appendix D.

206

2.3.3 Intermediate COCOMO and Component Estimation

Intermediate COCOMO can be applied to modules of a software package as well
as the entire package itself. Equation (2-3) applies to modules equal to
or greater than 2000 source statements.

For smaller modules, the following steps must be taken to estimate their
costs:

a. Calculate nominal effort for the whole product using the
following algorithm:

MM^ - K(DSI/1000)**E (2-5)

b. Calculate nominal productivity as follows:

NOM PROD - DSI/M^ (2-6)

c. Divide the nth module's size by nominal productivity
yielding the nominal component effort estimate.

MM^(n) - DSI(n)/N0M PROD (2-7)

d. For each module, establish ratings for each of the 15 development
attributes; then establish 15 coefficients unique to each component
using Equation 2-4 and Appendix D.

e. For the nth module, refine its nominal estimate by applying
the appropriate cost driver factors as follows:

MM(n) - C1(n)*C2(n)*...C15(n)*MMN(n) (2-8)

2.4 DETAILED COCOMO

In practice, software development factors (e.g., required reliability,
applications experience and interactive software development) affect some
phases more than others. Detailed COCOMO provides a mechanism for taking
into account these phenomena.

For a computer program that has been partitioned into n modules, the
development cost for the nth module is calculated using the following
relationship:

P
MM(n) - S C1(n,p)*C2(n,p)*... * C15(n,p) * MM^n.p) (2-9)

p-1
where

MMN(n,p) - MMN(n) * P(p)/100 (2-10)

MMM(n) is the nominal development cost of the nth module, calculated using
Equation 2-7 with DSI(n) set to the. number of delivered source instructions
projected for the nth module. P(p) is the percentage of the development
effort associated with the product design phase (i.e., p-1), the detailed
design phase (i.e., p-2), the code and unit test phase (i.e., p-3) or the
integration and test phase (i.e., p-4) . The values of P(p) are given in
Table 4.

207

The coefficients C.(n,p) (1-1,2,.
module and the pth phase.

15) are selected to be unique to the nth

TABLE 4 VALUES OF P(p) AS A PERCENTAGE

VALUES OF P(p
MODE EFFORT 2 KDSI 8 KDSI 32 KDSI 128 KDSI

Organic

Semidetached

Embedded

1 Product design 16
2 Detailed design 26
3 Code and unit test 42
4 Integration and test 16

1 Product design 17
2 Detailed design 27
3 Code and unit test 37
4 Integration and test 19

1 Product design 18
2 Detailed design 28
3 Code and unit test 32
4 Integration and test 22

16 16 16
25 24 23
40 38 36
19 22 25

17 17 17
26 26 24
35 33 31
22 25 28

18 18 18
27 26 25
30 28 26
25 28 31

3. COCOMO AND THE COST/SCHEDULE ESTIMATION OF OBJECT-ORIENTED ADA SOFTWARE

3.1 INTRODUCTION

This section describes the application of COCOMO in the estimation of the
cost of object-oriented Ada software. Section 3.2 introduces a special
technique for estimating the cost of object-oriented Ada software. This
technique establishes an estimation algorithm unique to object-oriented Ada
computer programs.

As do other software estimation models, the algorithm unique to object-
oriented software operates on a size metric and attributes of the Ada-unique
implementation of the design. Typically, software cost estimation models
describe how to establish implementation attributes but do not address the
more difficult issue of how to project the number of source statements.
Our discussion covers both topics. Specifically, the algorithms for
projecting the number of source statements needed to implement an object-
oriented design are introduced in Section 3.2.2, and a discussion of
attribute selection is provided in Section 3.2.3.

3.2 ESTIMATING THE COST OF OBJECT-ORIENTED ADA SOFTWARE

COCOMO has been formulated and calibrated using data measuring the develop-
ment of computer programs that have not been designed in an object-oriented
manner. For such software, complex dependency relationships typically
exist between types, variables, and program units. Accordingly, develop-
ment costs for such software has increased exponentially with computer
program size.

208

As described in earlier chapters, an object-oriented design is introduced
to minimize complex dependency relationships. Therefore, COCOMO and other
existing software cost/schedule estimation models cannot be directly
applied to the estimation of software to be developed in an object-oriented
manner. However, it is still possible to estimate the costs of object-
oriented Ada software using algorithms that take advantage of COCOMO in the
manner outlined in this section.

To establish these estimates, an estimation algorithm unique to software
implemented in an object-oriented manner is formulated in Section 3.2.1.
The algorithm operates on the number of source instructions required to
implement objects, which can be estimated using the techniques presented in
Section 3.2.2. The algorithm also requires the selection of COCOMO
development attributes, which is discussed in Section 3.2.3.

3.2.1 Algorithm Unique to Estimating Object-Oriented Ada Software
Development Costs

We can state that the cost to develop object-oriented Ada software is given
by the following relationship:

(COST) - (DESIGN COST) + (OBJECT IMPLEMENTATION COST)
+ (OBJECT IMPLEMENTATION INTEGRATION COST) (3-1)

Assuming that the cost of a traditional design is essentially equivalent to
that of an object-oriented design, design costs can be estimated using
COCOMO as discussed in Paragraph 3.2.1a. In practice, it should not be
either significantly harder or easier to design object-oriented software
than software designed using other approaches (e.g., structured top-down).

Since objects are essentially independent computer programs that are
loosely coupled, the implementation of each object can be assumed to be an
independent effort. These implementation costs can be estimated using
COCOMO, as discussed in Paragraph 3.2.1b.

The integration of these objects is not directly accounted for by COCOMO.
However, as a lower limit, this effort can be assumed to be essentially
equivalent to that of integrating program units, since loosely coupled
object interfaces ideally should not be more complicated than typical
program unit interfaces. Making this assumption, a lower limit on the cost
of object integration can be estimated, as discussed in Paragraph 3.2.1c.

3.2.1a Establishing Design Cost of Object-Oriented Ada Software

The design costs for object-oriented Ada software can be assumed equivalent
to the costs incurred with other design methodologies. In practice, there
is nothing significantly more or less difficult about mapping software
requirements into loosely coupled objects or high coupled modules (e.g.,
modules associated with a top-down design).

Accordingly, COCOMO can be applied to establish object-oriented design
costs using the following relationship:

209

(DESIGN COST} - (% DESIGN/100)*MM(TOTAL) (3-2)

where MM(TOTAL) is the COCOMO software development estimate established
using Equation 2-3 (for Intermediate COCOMO) or Equation 2-9 (for Detailed
COCOMO) applied to the total number of source statements to be developed
for all objects; and % DESIGN is given by the following:

(% DESIGN) - P(l) + P(2) (3-3)

where P(l) is the percentage of the software development cost associated
with product design and P(2) is the percentage associated with detailed
design, as given in Table 4. However, it is anticipated that computer
aided design (CAD) systems will lower design costs, whether traditional or
object-oriented. Since, as COCOMO predicts, design costs account for more
than 40% of software development costs, these savings will be significant.
We discuss CAD and its ramifications with SHARP in Chapter IX.

3.2.lb Establishing Object Implementation Costs

Each object can be assumed to be developed essentially as an independent
computer program. With this assumption, COCOMO can be applied to establish
implementation costs using the following relationship:

P 0(p)
(OBJECT IMPLEMENTATION COST) - P(3)* S 2 MM(p.o) (3-4)

p-1 o-l

where P(3) is the percentage of the software development cost associated
with program unit code and test; and MM(p,o) is the development cost for
the oth object of the pth process. The factor P(3) is obtained using Table
4. The factors MM(p,o) are calculated using Intermediate COCOMO applied to
each object, as described in Section 2.3, or using Advanced COCOMO applied
to each object, as described in Section 2.4.

3.2.1c Establishing Object Implementation Integration Costs

As already stated, COCOMO does not predict object implementation integra-
tion costs. In practice, these costs will be relatively low if the objects
are loosely coupled and will increase as the degree of coupling increases.
The cost to develop strongly coupled objects will approach the cost asso-
ciated with traditional software efforts. This represents an upper limit
on the cost of software developed in an object-oriented manner.

As a lower limit, the cost of object integration costs can be estimated
using COCOMO by assuming that this effort is essentially equivalent to
integrating program units. This is the case for Ada-unique object-oriented
designs when objects are loosely coupled. For this situation, the follow-
ing relationship can be used to establish the lower limit:

(LOWER LIMIT FOR OBJECT) - P(4)*MM(EQUIV) (3-5)
IMPLEMENTATION INTEGRATION)

210

where P(4) is the percentage of software development cost associated with
program unit integration, from Table 4; and MM(EQUIV) is the development
cost for a number of program units equal to the number of objects to be
developed (for all processes). The later factor is calculated again using
Equation 2-3 (for Intermediate COCOMO) or Equation 2-9 (for Detailed
COCOMO), applied to the number of source instructions obtained by
multiplying the number of objects by the size of an individual program
unit. As discussed in Paragraph 3.4.2(c), program units typically average
approximately 49 source statements. Thus, as a lower limit, we assume that
the cost to integrate '0' objects is equivalent to the cost to integrate
'0' program units of 49 source statements each.

3.2.2 Estimating the Number of Source Statements of Object-Oriented
Ada Software

In order to apply COCOMO with any degree of accuracy, a meaningful estimate
of the number of Ada source statements is needed. For an object-oriented
Ada computer program, this can be effectively accomplished by examining the
object-oriented design established using the steps discussed in Section 2.2
of Chapter IV.

Specifically, the main Ada computer program will declare tasks for P
processes (Step 1) and each of the P processes will be partitioned into 0
objects (Step 2). The number of source statements (i.e., #SS) needed to
implement the object-oriented Ada design is given by the following:

p-P o-0(p)
#SS - S 2 #DSI(p,o) (3-6)

p-o o-l

where #DSI(p,o) is the number of source statements for the oth object in
the pth process. The index p equal to zero refers to subprogram declared
in the body of the main program. With Ada, the execution of these
subprograms is undertaken until completion concurrently with processes
established by tasks declared in the main program (in the time slice sense
of the word). They, therefore, act for a period of time like a defacto
process. Accordingly, we consider them the process associated with p equal
to zero.

The remainder of this subsection discusses three different methods that can
be used to estimate #DSI(p,o). Method 1 utilizes algebraic relationships,
which establish a count of the typical number of Ada statements needed to
implement code represented by the graphics. Method 2 is based upon analo-
gies to existing systems. Method 3 is based upon the "Theory of Sevens."
Method 3, is the easiest to apply in practice, but the least accurate.
Method 2 would be the most accurate, if SHARP were applied to several
acquisitions in conjunction with a cost/metric data collection system so
that a meaningful data base of design, cost and metric information became
available. With such historical Information, meaningful analogies could be
made.

3.2.2a Method 1 - Algebraic Count Relationships

The implementation of an object normally is encapsulated in an Ada package
or task, and has a local state unique to it defined in a data structure

211

established in the package or task. An object package declares one or more
procedures in its specification to facilitate inter-object communication.
The bodies of the communication program units are implemented using a
traditional structured/top-down design, with detail abstracted into levels.
Each level contains one or more program units. Therefore, the number of
delivered source instructions needed to implement the oth object of the pth
process is given by the relationship:

#DSI(p,o) - #DATA(p,o) + #PU(p,o) + #OPERS(p,o) (3-7)

where for the oth object in the pth process, #DATA(p,o) is the number of
source statements needed to establish the data structure; #PU(p,o) is the
number of source statements needed to implement program unit calls and
#OPERS(p,o) is the number of source statements to implement program unit
bodies, exclusive of the data structure. The factor #DATA(p,o) is given
by:

#DATA(p,o) - #TYPES(p,o) + #CONSTS(p,o) + #VARS(p,o) (3-8)

where for the oth object in the pth process, #TYPES(p,o) is the number of
source statements used to establish type definitions; #CONSTS(p,o) is the
number of source statements used to define constants; and #VAR(p,o) is the
number of source statements used to establish variables for the oth object
of the pth process.

The factor #PU(p,o) is given by:

L(p,o)
#PU(p,o) - S #SUBP(p,o,l) + 2*#WITHS(p,o,l) + #TASKS(p,o,1) (3-9)

1-1

where for the 1th level of the oth object in the pth process, #SUBP(p,o,l)
indicates the number of subprograms used, #WITHS(p,o,1) indicates the
number of Ada "with clauses" introduced, and #TASKS(p,o,1) indicates the
number of tasks introduced. The factor "2" in Equation (3-9) is
introduced to account for the assumption that Ada "use" clause typically
will be applied in conjunction with the "with" clause.

The factor #OPERS(p,o) in Equation 3-7 indicates the number of source
statements needed to implement processing in the oth object of the pth
process. It is derived from SHARP Annotated Pseudo Code (i.e., Step 7).
For example, for each program unit within the 1th level of abstraction, the
number of decisions can be counted, and the number of instructions needed
to implement algorithms, generic instantiation and exception handling can
be estimated by inspection of the annotated pseudo code. As an
alternative, the 'Theory of Sevens' could be applied to help project the
size of each program unit, as explained in Paragraph 3.2.2c.

This method of source instruction estimation requires a competent designer
who can map the software requirements into an object-oriented Ada design,
for example, using an automated CAD system for establishing SHARP graphics.
Then, by examination of the SHARP abstracts (either manually or
automatically), the factors associated with Equations 3-7 to 3-9 can be
established.

212

3.2.2b Method 2 - Analogies to Existing Software

We could also estimate the number of deliverable source instructions by
comparing System A to System B. In practice these systems are never
equivalent (or why would one need to build the new system). Accordingly,
parts that are similar need to be identified and isolated from parts that
are different. With SHARP abstracts, this can be effectively accomplished
by comparing the SHARP representation for System A to the SHARP representa-
tion for System B. For example, the number of objects used in each system
can be compared along with the number of program units used to implement
each object.

The number of source instructions associated with similar objects can be
established, while new (or significantly different versions of existing
objects) can be isolated. The number of source statements needed to
implement the new software can then be established using Method 1.

3.2.2c Theory of Sevens and Projecting the Number of Source statements
Used to Implement a Program Unit's Body

The psychologist George Miller performed studies in the 1950s that led him
to the conclusion that the number of. entities humans can comprehend at one
time is seven, plus or minus two. ' Beyond this limit, a concept is
typically too complex for a human to understand.

Booch in his book Software Engineering with Ada calls this the Hrair limit
and states the following:

"Clearly, developing software systems is a problem-solving
activity, and so the Hrair limit seems to apply. We suggest
that the principles of software engineering can help us
decompose systems so that, at each level of the solution,
the number of entities we must deal with at one time lies
within the Hrair limit."

Assuming this to be true, we can establish bounds on the number of source
instructions that typically will be used by programmers to implement
the bodies of Ada subprograms and tasks. As discussed in Chapter II, a
designer will use abstraction in the design of a program unit's body. A
small and easily comprehended number of source statements will typically be
needed to implement the body of each Ada program unit, since lower level
detail is passed to other called program units. In establishing and
implementing the body of each program unit, we might hypothesize that the
comprehension of programmers will be limited to 7 + 2 instructions per Ada
block of code, and 7+2 blocks of code per Ada program unit. This results
in the boundaries on the number of Ada source statements a programmer will
use the implementation of Ada blocks, and program units as follows:

Ada Block: 5 (low) 7 (medium) 9 (high)
Ada Program Unit: 25 (low) 49 (medium) 81 (high)

These factors could be used to form the basis for estimating the number of
Ada source statements that are expected to be used to implement the bodies
of Ada subprograms and tasks.

213

The estimator could rate the size and complexity of each program unit as
either very low, low, nominal, high or very high. Then, based upon the
Theory of Sevens, project the program unit's size using the source
statement counts shown in Table 5.

TABLE 5 SOURCE INSTRUCTIONS FOR THE BODIES OF
ADA SUBPROGRAMS AND TASKS BASED UPON
THE THEORY OF SEVENS

Number Ada Source Statements

Size/Complexity Rating Ada Block Body of Ada Subprogram or Task

Very High

High

Nominal

Low

Very Low

9

7

5

81

65

49

37

25

3.2.3 Selecting Attributes for Object-Oriented Ada Software Development

Once the size of an Ada computer program has been established, other
information characterizing the acquisition must be considered. With
COCOMO, this information is accounted for in cost-driver attributes.
Values selected for many of these attributes are driven by unique Ada
factors.

Initially, cost drivers will be affected by the lack of personnel with Ada
experience, compiler problems, incomplete Ada Programming Support Environ-
ments, uncertainties with the compiler validation process and the ineffi-
ciency of the new compilers. In the future, a base of Ada experienced
personnel with knowledge of comprehensive and standard support environments
will affect the cost drivers. As Ada technology matures, cost drivers for
target machine characteristics and tool support level must reflect that
maturity.

3.2.3a Product Attributes

The COCOMO attributes characterizing the product to be developed as follows
are :

• A1 (Required Software Reliability)

• A_ (Data Base Size)

• A. (Product Complexity)

214

Values for attributes A- and A- are essentially a function of product
requirements and not the implementation methodology. The value for
attribute A- can be selected to reflect the possible simplification of a
product's complexity introduced by an object-oriented design, since (a) the
design is well structured, (b) complex dependency relationships have been
reduced and (c) potential compilation problems have been diminished (i.e.,
by restricting object implementations to sizes that will compile in a
timely manner).

3.2.3b Computer Used

The COCOMO attributes characterizing the computer to be used are as
follows:

• A, (Execution Time Constraints)
• A,. (Main Storage Constraints)
• A, (Virtual Machine Volatility)
• A? (Computer Turnaround Time)

The value for attribute A. can be selected to reflect inefficiencies on an
Ada compiler, although such inefficiencies will diminish somewhat with
time. The value for attribute As can be selected to reflect the verbosity
of the Ada language relative to languages used to calibrate COCOMO. The
value for attribute A, can be selected to reflect high volatility in the
short-term, although historic norms should be reached in the long-term.
The value for attribute A can be selected to reflect the processing
capabilities available relative to the amount of Ada code to be produced.
This value can take into account the reduction in compilation problems
introduced by proper object-oriented designs, or the magnification of
compilation problems introduced by inappropriate design approaches.

3.2.3c Development Personnel

The COCOMO attributes characterizing personnel to undertake the software
development effort are as follows:

A„ (Analyst Capability)
Aq (Application Experience)
A10 (Programmer Capability)
A (Virtual Machine Experience)
A-„ (Programming Language Experience)

The value for these attributes can be selected to reflect the inherent
capabilities of the contractor responsible for the development of the Ada
software. It is anticipated that these capabilities will improve with
time, as the DoD software community becomes knowledgeable in Ada.

3.2.3d Other Attributes

Other COCOMO attributes are as follows:

• A1_ (Use of Modern Programming Practices)
• A1 (Level of Tool Support)
• A1 (Schedule Constraint)

215

The fact that Ada facilitates several modern programming capabilities
should be reflected in the value selected for attribute A1» . For example,
in addition to providing a mechanism for implementing object-oriented
designs, Ada promotes general purpose program units through its generics
capabilities, facilitates exception handling, and facilitates abstraction
within data structures and the implementation of object complexities.

The high level of tool support provided by Ada Programming Support
Environments (APSEs) can be reflected in the value selected for attribute
A... . When making this selection, an estimator must make sure that selected
APSE tools apply to the target computing system as well as the host. The
value selected for attribute A, _ can take into account the amount of time
available relative to the time required to build object-oriented Ada
software, which should prove to be substantially less than traditional
techniques.

3.3 ESTIMATING THE TIME DURATION FOR SOFTWARE DEVELOPMENT (SCHEDULE)

COCOMO can be used to project the time duration expected for a software
development effort. This projection is made as a function of the cost
estimate using the following relationships:

0 38
TDUR - 2.5(MM)"'^° (Organic Mode)
TDUR - 2.5(MM)JJ"^ (Semidetached Mode)
TDUR - 2.5(MM) (Embedded Mode) (3-10)

In practice, one should estimate, on an object-by-object basis, the time
required to complete the various major activities associated with the
development of a large and complex Ada computer program, including the
development of a non-deliverable support software needed to develop the
deliverable computer program. Then, using a PERT diagram (or equivalent),
the time duration of the various software development tasks should be
interrelated to establish the time duration in months for the overall
software development project.

4. EXAMPLE

4.1 INTRODUCTION

Consider the hypothetical situation where the government must make a
decision as to (a) what programming language it will specify in the
development of a large and complex, embedded computer program; and (b) when
the development effort should start.

In order to make this decision, the government contracts with an
engineering firm, which is to establish cost estimates for different
possible object-oriented Ada efforts. Specifically, projections are to be
made for an effort to start in the short-term and for an effort to start at
a later date. Also, as a possible alternative, the engineering firm is to
estimate the cost to develop the software if a traditional top-down struc-
tured design is implemented using a FORTRAN/assembly language combination.
Historically, this combination has been applied in about 2/3 of embedded
systems acquired af. the Electronic Systems Division (ESD) of the Air Force
Systems Command. *•"

216

As a first step in establishing these estimates, the estimator establishes
cost driver attributes characterizing the software acquisition for the
application of Ada on the short-term and in the long-term, and for the
application of the FORTRAN/assembly language combination. The results of
this analysis are shown in Section 4.2.

Second, the estimator works with a software designer to project the number
of source statements required to implement the object-oriented Ada software
and the FORTRAN/assembly language software. The results of this analysis
are shown in Section 4.3.

Then, the estimator applies algorithms described in Sections 2 and 3 to
establish cost projections.

4.2 ESTABLISHING ATTRIBUTES

The COCOMO attribute inputs selected for each effort by an estimator are
shown in Table 6. He set ten of the COCOMO attribute inputs to "nominal."
Thus, these attributes were not varied as a function of the programming
language to be used in relation to time of the development effort (i.e.,
short-term or long-term). Rather, they were used to establish a nominal
definition of the software product (i.e., its required reliability, data
base size and complexity), the processing capability available (i.e., main
storage capacity, execution time capacity, and turnaround time), the
inherent ability of development and maintenance personnel (i.e., their
capability and experience in the application problem domain to be program-
med), and the schedule followed in the development of the software product.

The other five COCOMO attributes were assumed to account for cost differ-
ences due to the language used in relation to the time the development
effort was to be undertaken. The attribute Virtual Machine Volatility
accounts for the relative frequency of changes that must be made to main-
tain the virtual machine, defined to be the hardware and software utilized
in conjunction with the execution of the application software (i.e., the
computer hardware, operating system, run-time system, and compiler). This
factor was set too high (i.e., one week to two months between changes) for
the development of Ada software in the short-term, and too low (i.e., one
month to twelve months between changes) for development of Ada software in
the long-term. In the short-term, the estimator anticipates that the
application of Ada will uncover errors in the software of the virtual
machine. It has been found in the past that during initial applications of
a new language, such software is error prone. Critical bugs have to be
fixed and necessary features have to be added. In the long-term, the
estimator assumed that most of these problems will have been resolved.

The attributes Virtual Machine Experience and Programming Language
Experience were varied in the same manner to account for the general
experience of the available work force in the application of Ada. These
attributes were set to low (i.e., four months average experience) for
development of Ada software in the short-term, and to high (i.e., three
years or more average experience) for the development of Ada software in
the long-term. Initially, few experienced Ada programmers will be avail-
able, but this will not be the case in the long-term.

217

TABLE 6 NUMERICAL VALUES SELECTED FOR COEFFICIENTS

Coeff. Values — Development

Category Input Attribute

Product Required Software Reliability
Data Bate 8iac
Product Coaplaxity

Coaputer Execution Time Constraint
Main Storage Constraint
Virtual aackiaa Volatility
Coaputer Turnaround Tic*

Personnel Analyst Capability
Applications Experience
Prograaaer Capability
Virtual Mac bias Experience
Progra—llaj Lang. Experience

Project Modem Programing Practices
Lreel of Tool Sapport
Required Development Schedule

Range Ada Range Ada Fortran a
Coeff. Short Term Long Tern: Asseably

Cl 1.00 1.00 1.00
c2 1.00 1.00 1.00
C3 1.00 1.00 1.00

C4 1.00 1.00 1.00

C5 1.00 1.00 1.00
<* 1.12 0.87 0.87
C7 1.00 1.00 1.00

C8 1.00 1.00 1.00
C9 1.00 1.00 1.00
C10 1.00 1.00 1.00
Cll 1.0S 0.90 1.00
Cl2 1.06 0.95 1.00

«n 0.89 0.82 1.00
cu 0.89 0.83 1.00
Cl5 1.00 1.00 1.00

218

The attribute Modern Programming Practices was varied to indicate the
extent to which such capabilities of Ada are to be exploited. This attri-
bute was set to high (i.e., above average application) for the development
of Ada software in the short-term. This attribute was set to very high
(i.e., extensively and efficiently used) for the development of Ada soft-
ware in the long-term.

The attribute Use of Software Tools was varied to indicate the extent to
which Ada programming support tools are applied. This attribute was set to
high (i.e., strong use of tools) for the development of Ada software in the
short-term. This attribute was set to very high (i.e., heavy use of
advanced tools) for the development of Ada software in the long-term. The
estimator assumed that programmers will take advantage of Ada programming
support. He also assumed that in the short-term, APSEs will encompass a
necessary and sufficient set of tools needed to develop Ada software, and
in the long-term, a comprehensive set of such tools will be incorporated
into APSEs, for both host and target machines.

The numerical values chosen for the coefficients, corresponding to the
COCOMO input attributes, are also shown in Table 6. They were established
by relating attribute ratings to the corresponding coefficient numerical
values defined in Software Engineering Economics, which are shown in
Appendix D. The coefficients associated with the ten COCOMO attributes,
not varied as a function of the language used in relation to when the
effort was undertaken, were all set to unity (i.e., the coefficient
numerical value for a nominal attribute setting). Each of the coefficients
associated with the other five COCOMO attributes, were assumed to account
for cost differences due to the language to be used in relation to the time
the development effort was to take place.

4.3 ESTIMATING THE SIZE METRIC

As a prerequisite to establishing an accurate projection for the size
metric, a designer establishes an object-oriented design for the embedded
software using a new automated SHARP system (e.g., the system described in
Chapter IX). The automated system produces an estimate of the size metric.
In order to understand this projection, the estimator decides to inspect
the set of SHARP abstracts produced to represent the object-oriented Ada
design.

First. the estimator reviews the SHARP representation of the main program
to identify the number of processes established by the designer. He finds
that the requirements for the embedded computer program have been
distributed into 10 concurrently executing processes (e.g., in a manner
similar to the processes shown in Figure 59 in Chapter IV).

Second, the estimator reviews SHARP object layer diagrams established by
the designer for each process. He finds that requirements assigned to each
process have been distributed to several objects (e.g., in the manner shown
in Figure 60 in Chapter IV). Specifically, the number of objects per
process, 0(p), are as follows:

219

0(1)-10
0(2)-L2
0(3)- 9
0(4)- 8
0(5)-ll

0(6)-12
0(7)-14
0(8)- 9
0(9)- 8

0(10)- 7

Third, the estimator reviews the SHARP data structure diagram prepared for
each object (e.g., in the manner shown in Figure 64 in Chapter IV). Using
Equation 3-8, he estimates the number of Ada source statements needed to
implement the data structures, #DATA(p,o). The results are shown in Table
7. For example, for the first object of the first process, he finds the
following:

#TYPES(1,1) - 20
#C0NSTS(1,1) - 15
#VARS(1,1) - 55

Therefore, using Equation 3-8:

#DATA(1,1) - #TYPES(1,1) + #C0NSTS(1,1) + #VARS(1,1) - 90

Fourth, the estimator reviews SHARP hierarchy diagrams established by the
designer to represent the hierarchy of program units used to implement the
internal complexities of each object (e.g., in the manner shown in Figure
62 of Chapter IV). Using Equation 3-9, he estimates the number of Ada
source statements needed to facilitate the structures shown for oth object
in the pth process, #PU(p,o). For example, for the first object of the
first process, he finds the following:

#SUBP(1, 1, ,D - 1
#SUBP(1, 1, ,2) - 2
#SUBP(1, 1, ,3) - 4
#SUBP(1, 1 ,4) - 3
#SUBP(1, 1 ,5) - 4
wSUBP(l, 1 ,6) - 6
#SUBP(1, 1 ,7) = 2

#WITHS(1,1,1) - 0
#WITHS(1,1,2) - 1
#WITHS(1,1,3) - 0
#WITHS(1,1,4) = 2
#WITHS(1,1,5) - 2
#WITHS(1,1,6) - 0
#WITHS(1,1,7) = 2

#TASKS(1,1,1) = 0
#TASKS(1,1,2) - 2
#TASKS(1,1,3) - 0
#TASKS(1,1,4) - 4
#TASKS(1,1,4) - 0
#TASKS(1,1,6) = 0
#TASKS(1,1,7) - 0

Therefore, using Equation 3-9, the following applies to the first object of
the first process:

7
#PU(1,1) - 2 {#SUBP(1,1,1) + 2*#WITHS(1,1,1) + #TASKS(1,1,1))

1-1
-1+6+4+11+8+6+6-42

220

TABLE 7

SIZE DATA

£ a.

Source States to Implement

Data Structure
#DATA(p.o^

Program Unit Operations/
Calls Logic in Bodies
#PU(p.o) #0PERS(p.o)

Total #
Source
Statement
*DSI(p.o)

1 90 42 1385 1517

2 150 30 1250 1430

3 75 20 1550 795

4 75 20 700 795

5 95 25 1020 1140

6 107 30 1275 1412

7 95 40 1405 1540

8 85 38 1500 1623

9 95 40 1600 1735

10 100 45 1800 1945 13.932

i 160 40 1200 1400

2 40 10 300 350

3 80 20 600 700

^ 120 30 950 1100

5 90 20 620 730

6 80 15 475 570

7 60 12 380 452

8 90 25 750 865

9 120 30 800 950

10 80 20 500 600

11 150 40 1100 1290

12 50 10 300 360 9367

221

E o

TAB: LE 7

(Cont: Lnued)

Source States to Implement
Total #

Program Unit Operations/ Source
Data Structure Call s Logic in Bodies Statemnts

o #DATA(p.o) #PU(D. o) #0PERSCD.O} #DSI(p.o)

1 40 12 336 338

2 90 38 1330 1458

3 80 27 783 890

4 70 33 1023 1126

5 90 29 870 1019

6 90 18 576 684

7 130 35 1365 1530

8 140 30 1020 1190

9 55 32 1184 1271 9506

1 75 37 1036 1148

2 92 27 891 1010

3 110 32 992 1134

4 120 29 1073 1222

5 80 16 496 592

6 70 12 360 442

7 60 19 627 706

8 50 15 540 605 6.859

222

TABLE 7

(Continued)

Source States to Implement
Total #

Program Unit Operations/ Source
Data Structure Calls Logic in Bodies Statemnts

#DATA(p.o) #PU(p.o) #OPERS(p.o) #051(0.0)

1

2

3

4

5

6

7

8

9

10

11

90

102

125

85

132

96

87

50

40

90

120

35

37

40

31

38

31

25

34

16

27

29

1085

1036

1160

1023

1026

775

800

1122

448

837

986

1215

1175

1325

1139

1196

902

912

1206

504

954

1135 11.663

6 1

2

3

4

5

6

7

8

9

10

11

12

90

80

95

115

130

110

80

50

40

60

70

50

17

15

25

29

32

28

12

14

16

23

31

13

544

435

835

986

864

840

432

434

528

713

961

351

651

530

955

1130

1026

978

524

498

584

796

1062

414 9.148

223

TABLE 7

(Cont: Lnued)

Source States to Implement
Total #

Program Unit Operation/ Source
Data Structure Calls Logic in Bodies Statemnts

12 0 #DATA(p.o) #?V(x>.o) #0PERS(D.O) #DSI(p.o)

7 1 110 31 992 1133

2 95 27 783 905

3 55 14 504 573

4 75 16 528 619

5 95 19 551 665

6 85 23 736 844

7 115 27 842 984

8 110 25 754 889

9 60 12 371 443

10 80 17 522 619

11 90 16 514 620

12 120 34 1020 1174

13 70 18 579 685

14 135 37 1147 1319 11.472

S 1 55 15 467 537

2 75 18 601 694

3 110 24 768 902

4 50 17 559 626

5 55 19 645 718

6 50 23 713 786

7 40 16 443 499

8 65 31 926 1022

9 70 32 878 980 6.765

224

TABLE 7

(Concluded)

Source States to Implement
Total #

Program Unit Operation/ Source
Data Structure Calls Logic in Bodies Statemnts

E o #DATA(p.o) #PU(p.o) #OPERS(p.o) #DSI(p.o)

12

17

21

19

13

10

15

13

15

16

22

14

31

28

30 960 1080 5_JZ_

1 40

2 45

3 35

4 55

5 60

6 40

7 50

8 40

1 70

2 80

3 90

4 60

5 75

6 65

7 90

363 415

527 589

693 749

608 682

403 476

324 374

519 584

403 456

452 537

480 576

682 704

420 494

868 974

840 933

960 1080

225

The results for all objects are shown in Table 7.

Fifth, the estimator reviews annotated pseudo code prepared to represent
the bodies of program units used to implement each object. He establishes
an estimate of the number of source statements for each body, knowing
through experience the relationship between pseudo code and actual Ada
code. For example, for the first object of the first process, he finds the
following:

#B0D(1,1,1) - 55
#B0D(1,1,2) - 180
#B0D(1,1,3) - 260
#B0D(1,1,4) - 350
#B0D(1,1,5) - 250
#B0D(1,1,6) - 375
#B0D(1,1,7) - 115

Therefore, it follows that:

7
#0PERS(1,1) - 2 #B0D(1,1,1) - 1385

1-1

The results for all objects are also shown in Table 7.

Sixth, the estimator uses Equation 3-7 to estimate the number of delivered
source statements to implement each object in each process, #DSI(p,o). For
example, for the first object of the first process, he finds the following:

#DSI(1,1) - #DATA(1,1) + #PU(1,1) + #0PERS(1,1)
or

#DSI(1,1) - 90 + 42 + 1385 - 1517

The results of all objects are shown in Table 7.

Seventh, the estimator uses the results in Table 7 and Equation 3-6 to
estimate the number of source statements to implement the object-oriented
Ada design, #SS, as follows:

P o(p)
#SS = S 2 #DSI(p,o)

p=o o-l

10 12 9
#SS - 400 + 2 #DSI(l,o) + 2 #DSI(2,o) + 2 #DSI(3,o)

o-l o-l o-l
8 11 12

+ S #DSI(4,o) + 2 #DSI(5,o) + 2 #DSI(6,o)
o=l 0=1 o-l
14 9 8 7

+ 2 #DSI(7,o) + 2 #DSI(8,o) + 2 #DSI(9,o) + 2 #DSI(10,o)
o-l o-l o-l o-l

- 400 + 13,932 + 9,367 + 9,506 + 6,859

+ 11,663 + 9,148 + 11,472 + 6,765 + 4,325 + 5,298 - 88.335

226

4.4 PROJECTING DEVELOPMENT COSTS

Having established attributes and a size metric, the estimator can now
calculate projections for the cost of the object-oriented Ada-unique
versions of the embedded computer program.

4.4.1 Object-Oriented Ada (Short-Term Costs)

With the chosen cost driver attributes for the software development effort
to be undertaken in the short-term and the estimate of the size metric for
each object, the estimator proceeded with the short-term cost calculation.
Specifically, he established the 3 cost factors of Equation 3-1:

• Design cost
• Object implementation cost
• Object integration cost

4.4.1a Calculating Design Costs

Equation 3-2 was applied to establish the first factor, design costs. The
factor '% DESIGN' was calculated by adding together the percentage of
software development costs associated with product design, P(l), to the
percentage of software development costs associated with detailed design
costs, P(2). P(l) and P(2) were selected from Column 4 of Table 4 (under
128 KSDI) resulting in:

% DESIGN - P(l) + P(2) - 18 + 25 - 43%

The factor MM(TOTAL) was calculated using Equation 2-3 as follows:

MM(TOTAL) - (C * C* . . .C.,)K(DSI/1000)**E

MM(TOTAL) - (1*1*1*1*1*1.12*1*1*1*1*1.08*1.06*.89*.89*1)
*2.8(88,335/1000)**1.2 - 618.2

Therefore, applying Equation 3-2:

(DESIGN COST)- (% DESIGN/100)*MM(TOTAL) - (43/100)*618.2 - 265.8

4.4.1b Calculating Object Implementation Costs

Equation 3-4 was applied to establish the second factor of Equation 3-1,
object implementation costs. The factor P(3), the percentage of the
software development cost associated with program unit code and test was
found in Column 4 of Table 4 (under 128KDSI) to be 26%. The factors
MM(p,o) were calculated using Equations (2-5) to (2-8) of Intermediate
COCOMO and the productivity associated with 2000 source statements as
follows:

1. Applying Equation 2-5 for a 2000 source statement module,
m^ - 2.8(2000/1000)**1.2 - 6.43 manmonths

2. Applying Equation 2-6,
NOM PROD - 2000/6.43 - 311 source statements/manmonth

227

3. Applying Equation 2-7, the nominal cost of the oth object on the
pth process is given by:

M^p.o) - DSI(p,o)/311

4. Applying this result in Equation 2-8,
MM(p,o) - C (p,o)*C (p,o)...C (P,o)*royP,o)

- cJCp.o^CjCp.o)*. . .CJ5(p,o)*D§I(p,o)/3U

5. Applying Equation (3-4), it follows that the Object
Implementation Cost (OIC) is calculated as follows:

P 0(p)
OIC - P(3) S S MM(p.o)

p-1 o-l
P 0(p)

- P(3)* X E C <p,o)*C2(p,o)....C15(p,o)*DSI(p,o)/311
p-1 o-l

6. Setting C. (p,o)*C„(p,o)C1 (p,o) to a constant for all
values of p,o with the values shown in Table 4-1, it follows that

P 0(p)
OIC - P(3)*K S E DSI(p,o)/311

p-1 o-l

- P(3)*K*#SS/311
- .26*1.0156*88,335/311 - 75.0 man-months

This calculation was not made directly using Equation (2-3), since the size
of Ada object implementation is typically less than 2000 source statements
and Equation (2-3) is applicable only for 2000 or more source statements.
Accordingly, the component estimation approach described in Section 2.3.3
was applied based upon the productivity associated with a 2000 source
statement object.

4.4.1c Calculating Object Implementation Integration Costs

Equation 3-5 was applied to establish a lower limit on the third factor,
object implementation integration costs. The percentage of software
development costs associated with program unit integration P(4), was found
to be 31% in Column 4 of Table 2-3 (under 128KDSI). The factor MM(EQUTV)
was calculated using Equation 2-3 as follows:

MM(EQUIV) - (C * C * ...C) K (DSI(EQUIV)/1000)**E
= (1*1*1*1*1*1.2*1*1*1*1*1.08*1 06*.89*.89*1)2.8(4900/1000)**l.2 - 19.2

where the integration of 100 objects was assumed equivalent to integrating
100 program units of 49 source statements each (i.e., the probable size of
a program unit per the Theory of Sevens, as shown in Table 5). Therefore,

(Lower Limit for Object
Implementation Integration) - .31*19.2 - 6.0

4.4.Id Total Short-Term Costs

Thus, the lower limit on the cost in the short-term is established using
Equation 3-1 as follows:

228

Lower Limit on Ada
Short-Term Costs - {Design Cost) + {Object Implementation Cost)

+ {Object Implementation Integration Cost)
- 265.8 + 75.0 + 6.0 - 346.8 manmonths

The upper limit is established directly using Equation 2-3 of Intermediate
C0C0M0 as follows:

Upper Limit on Ada _ .. r ,)K(DSI/1000)**E
Short-Term Costs 12 15 '

-(1*1*1*1*1*1.12*1*1*1*1*1.08*1.06*.89*.89*1) 2.8(88,335/1000)**l.2 - 615.5
manmonths

In practice, if the objects are sufficiently decoupled, the lower limit
would provide the more accurate estimate of the software development cost.
As the coupling of objects increases, the cost of the software development
would tend to drift toward the upper limit, depending upon the extent of
object coupling introduced.

4.4.2 Object-Oriented Ada (Long-Term Costs)

The estimator then modified his estimate of the object-oriented Ada effort
made for the short-term effort to establish the cost estimate applicable to
the long-term. Specifically, he changed the cost driver attributes as
shown in Table 4-1. With the new cost driver attributes, the estimator
established the following projection:

Lower Limit on Long-Term Costs - 172.9 manmonths

Upper Limits on Long-Term Costs- 306.8 manmonths

4.4.3 FORTRAN/Assembly Language Costs

The estimator then applied the cost drivers he chooses to estimate the
software development effort undertaken using the FORTRAN/assembly language
combination and a traditional structured top-down design.

The estimator was not sure that the size metric used to make the object-
oriented Ada projection was applicable to the FORTRAN/assembly language
projection, having read the following in The Analytic Sciences Corporation

/ report entitled "The Impact of Ada on Software Development Costs:"11

"Software Size Impact - The number of delivered source lines of
code (DSLOC) or delivered, executable, machine-level instructions
(DEMI) that will be required to program an application using Ada
will differ from the amount required to program the same

t application in another HOL. Certain features of Ada will cause a
reduction in the DSLOC, while others will cause an increase. For
example, the richness of the Ada language requires fewer DSLOC to
achieve certain functions, while the requirement for disciplined,
explicit declaration of data items requires more DSLOC."

229

The estimator investigated this matter and found that Software Productivity
Research, Inc. of Cambridge, Massachusetts had published numbers relating
the verbosity of Ada to FORTRAN and assembly language. Specifically, their
data indicates that FORTRAN is 48% more verbose than Ada and assembly
language is 250% more verbose than Ada.12 Using these relative verbosity
numbers and assuming that 20% of the FORTRAN/assembly language combination
would be written in assembly language, the estimator calculated that the
FORTRAN/assembly language combination would be 1.9 times more Ada (i.e.,
.2*3.5 + .8*1.48 - 1.884). He then assumed a ± 20% error in this relative
verbosity and established the #SS for the FORTRAN/assembly language
combination with the following:

#SS (FORTRAN/assembly) - {1.9* #SS (Ada)} ± 20% - 167,837 ± 20%

As indicated by Boehm in his book Software Engineering Economics, the cost
to develop software is a direct function of the number of source statements
that must be developed. The estimator made this assumption and using
Equation (2-3), he made the following calculations:

Lower Limit on FORTRAN
Assembly Language Costs - .87*2.8(134,269/1000)**l.2 - 871.5 manmonths

Upper Limit on FORTRAN

Assembly Language Costs - .87*2.8(201,404/1000)**!.2 - 1417.6 manmonths

The results of the set of cost projections are shown in Table 8.

4.5 CONCLUSIONS

An estimator must understand factors that will affect the cost of Ada
software development. A cost model must be chosen that can account for the
Ada-unique factors.

In this chapter, a special algorithm has been formulated for estimating the
cost to develop Ada software in an object-oriented manner. C0C0M0 was used
as the basis for estimating factors within the special algorithm, since:

• Studies have indicated that C0C0M0 exhibits reasonable
accuracy in the estimation of software life-cycle cost when
its inputs are chosen correctly. 13

• C0C0M0 predicts costs as a function of model inputs that can
be selected to account for Ada's expected impact in both the
short-term and long-term on compiler performance, programmer
experience, use of modern programming practices and software
tools. Proponents of Ada predict that these factors have a
significant effect on cost savings in the long-run.

230

TABLE 8

COST/SCHEDULE ESTIMATES FOR HYPOTHETICAL SOFTWARE

DEVELOPMENT APPROACH COST (ManMonths)

Object-Oriented Ada 346.8 to 615.5
(Short-Term)

Object-Oriented Ada 172.9 to 306.8
(Long-Term)

FORTRAN/Asserably 871.5 to 1417.6
Language Combination

#SS - 88,335
K - 2.8
E - 1.2

C C„, ... C set per Table 4-6

231

• Comprehensive documentation exists describing how to select
numerical values for input factors.

• COCOMO can be used to project the cost to design Ada
software and implement individual objects. These are basic
cost factors in the special algorithm applicable to object-
oriented design.

The results of applying the special algorithm for the estimation of
object-oriented Ada software in a hypothetical system are shown in Table
8. The range of cost values shown for the development object-oriented Ada
software account for the extent of decoupling between objects. Objects
that are strongly decoupled will cost must less to develop than objects
that are strongly coupled. In the limit, the cost to develop strongly
coupled objects will approach the cost to develop Ada software in a tradi-
tional manner (i.e., with strong dependencies between types, variables and
program units). In our example, strongly decoupled objects cost less than
70% of the cost incurred in developing strongly coupled objects.

Additional significant savings with Ada are expected in the long run due to
positive affects of a standardization on such software acquisition attri-
butes as virtual machine stability, personnel experience and use of soft-
ware tools.

5. FUNCTION POINT ANALYSIS

The size metric algorithm presented in Section 3.4.2 can be used in
conjunction with SHARP abstracts to project the number of Ada source
statements needed to implement an Ada computer program. Factors in the
algorithm are derived from the SHARP abstracts that represent the
object-oriented Ada design for the computer program.

As an alternative during cost estimation, SHARP abstracts could be used to
establish factors associated with function point analysis, to provide a
straight forward and fast way to establish the size metric. The size
metric can be projected as a function of a metric referred to as Function
Point Total (FPT) , which was developed by Allen Albrecht of IBM over the
last decade. It is defined by the following relationship:

FPT -{Complexity Adjustment) * {4*#Inputs + 5*#0utputs

+ 4*#Inquiries + 10*#Data Files + 7*#Interfaces} (5-1)

where #Inputs refers to both data and control information entering a
computer program from the an external source; #0utputs refers to both data
and control information leaving the computer program for an external
source; #Inquiries refer to such things as 'HELP' screens and selection
menus; #DATA Files include flat files on tape or disk, a 'leg' of a
hierarchical data base and a table in a relationship data base; and
#Interfaces are defined as files passed between or shared among separate
applications. The Complexity Adjustment factor ranges from .75 to 1.25.
(In 1985, the Albrecht methodology modified the original complexity adjust-
ment to multiple complexity adjustments -- one for #Inputs, one for
^outputs, one for #Inquiries, one for #Data Files and one for #Interfaces.)

232

Software Productivity Research, Inc. of Cambridge, Massachusetts has
developed a product that projects the number of source statements it will
take to implement a computer program as a function of the Function Point
Total. As shown in Table 9, the software product (referred to as SPQR)
establishes the number of source lines per function point for 30 program-
ming languages, including Ada. In Table 9, the 'level' of a language is
defined as the approximate number of assembler language statements that an
experienced programmer would write to create the effect of one source
statement in the language being used. Source code statements are defined
in SPQR as consisting of executable statements and data definitions.

The factors used to calculate an object's Function Point Total could be
established by inspection of SHARP abstracts. For example, SHARP data flow
diagrams for program units facilitating data transfer into and out of an
object implementation could be used to identify the factors #Inputs and
#0utputs for the object; and the SHARP data structure diagram for an object
could be used to help establish #Inquiries, #Data Files and #Interfaces.

6. CHAPTER SUMMARY

C0C0M0 cannot be directly used to estimate the cost to develop Ada software
in an object-oriented manner. However, by applying C0C0M0 in a special
manner, the parts of an object-oriented effort can be individually
assessed. Namely, design costs, object implementation costs and object
implementation integration costs can be individually addressed. Design
costs can be estimated using C0C0M0 by assuming that these costs would be
essentially equivalent to the costs incurred using a traditional design,
which is projected by C0C0M0. Object implementation costs can be estimated
by assuming that the development of each object is essentially an indepen-
dent effort and applying COC0MO directly to each of these efforts.

Object integration costs cannot actually be estimated using C0C0M0.
However, as a lower limit, the integration effort can be assumed to be
essentially equivalent to that of integrating program units, since loosely
coupled object interfaces ideally should not be more complicated than
typical program unit interfaces.

Using these assumptions in an example, we found that the cost to develop
Ada software consisting of strongly decoupled objects is less than 70% of
the cost incurred in developing strongly coupled objects. In practice, the
cost of Ada software developed in an object-oriented manner depends upon
the extent of decoupling between objects. In the limit, the cost to
develop strongly coupled objects would approach the cost to develop highly
coupled software with strong dependency relationships.

When applying C0C0MO, whether directly in projecting the costs of highly
coupled software components or indirectly in projecting the cost of
decoupled object-oriented Ada software, the size of the software is the key
input parameter to the C0C0M0 model. Using SHARP abstracts, the size
metric can be estimated directly as a function of the computer program's
design or the Function Point Total.

TM - - SPQR is a trademark of Software Productivity Research, Inc,

233

TABLE 9

NUMBER OF COMPUTER PROGRAM SOURCE STATEMENTS
PER FUNCTION POINT TOTAL

SOURCE LANGUAGES AND LEVELS IN SPQR

Language

1. Basic Assembler
2. Macro Assembler
3. C
4. ALGOL
5. CHILL
6. COBOL
7. FORTRAN
8. Mixed Languages (Default)
9. Other Languages (Default)
10. PASCAL
11. RPG
12. PL/I
13. MODULA 2
14. Ada
15. PROLOG
16. LISP
17. FORTH
18. BASIC
19. LOGO
20. English-Based Languages
21. Data Base Languages
22. Decision Support Languages
23. Statistical Languages
24. APL
25. OBJECTIVE-C
26. SMALLTALK
27. Menu-Driven Generators
28. Data Base Query Languages
29. Spread-sheet Languages
30. Graphic Icon Languages

Level

1
1.5
2.5
3
3
3
3
3
3

3.5
4
4
4

4.5
5
5
5
5

5.5
6
8
9

10
10
12
15
20
25
50
75

Source Lines Per
Function Point

320
213
128
105
105
105
105
105
105
91
80
80
80
71
64
64
64
64
58
53
40
35
32
32
27
21
16
13
6
4

This table has been taken from "Software Productivity," Volume 1, Number 1
Software Productivity Research, Inc., March/April 1986.

234

CHAPTER VIII

Teaching Object-Oriented Ada

In this chapter, we address the level and depth of Ada instruction
appropriate for different personnel types involved in a DoD software
acquisition, including project managers, system engineers, software
engineers and programmers. The use of SHARP abstracts is described in the
context of instructing students in developing Ada software in an object-
oriented manner. Specifically, we address teaching project managers and
system engineers (a) object-oriented technology, (b) basic concepts in an
Ada implementation of an object-oriented design, and (c) the cost
ramifications of this approach. In addition, we address teaching software
engineers and programmers the use of Ada to implement an object-oriented
design. In both cases, the abstracts of SHARP can be used to graphically
illustrate the basic technology, thus establishing a solid knowledge base
for learning Ada implementation detail.

We suggest that it is important that appropriate Ada instruction be given
to project managers and system engineers, as well as software engineers and
programmers. Of course, the level and depth of this instruction should not
be the same. However, the gap in knowledge between personnel involved in
software acquisition must be constrained to the extent that effective
communication can take place during system acquisition.

We further suggest that Ada should be taught in the context of object-
oriented design and in a top-down manner (i.e., high-level structure down
to low-level implementation detail). This approach can be taken using the
abstracts of SHARP, since with SHARP Ada computer programs can be repre-
sented by graphics. The graphics can be used to provide clear mental
pictures of complex technology. Then, once the technology has been intro-
duced, design implementation in Ada source code can be taught.

1. INTRODUCTION

1.1 BACKGROUND

As discussed in the earlier chapters, during the development of large and
complex computer programs, the use of an object-oriented approach is
critical because of the need to control complex dependency relationships
between types, variables and program units. In addition, the object-
oriented approach is critical because of the speed of Ada compilers. With
object-oriented Ada, requirements assigned to objects are implemented in
loosely coupled Ada packages and tasks, which the development team can code
and test independently. By constraining their size and stubbing program
units interacting with them, the Ada packages and tasks can be compiled and
recompiled in a timely manner during their development. With traditional
methodologies and highly coupled program units, the compilation of large
and complex Ada computer programs is a significant problem.

235

It is important that appropriate instruction in the effective use of Ada be
given to personnel involved in the acquisition of DoD software, including
project managers and system engineers as well as software engineers and
programmers. Of course, the level of detail and emphasis of the instruc-
tion provided to the different team members should have the appropriate
depth and point of view.

Program managers must have sufficient knowledge of an Ada effort to intel-
lectually grasp the problem they must manage. Experience has shown that
misunderstood projects tend to go astray. Initial budgets tend to be
insufficient and resource allocation during the course of the software
development effort may not be appropriate. It is important that program
managers and administrators understand the cost/schedule ramifications of
object-oriented Ada efforts.

System engineers are responsible for system conception and the specifica-
tion of system requirements. They must have sufficient knowledge of Ada
and an object-oriented approach to software development to properly allo-
cate system requirements to software, to establish effective hardware
processing configurations, and to establish appropriate interfaces between
hardware and software.

Software engineers must have advanced knowledge of Ada and the object-
oriented methodology. They must have the capability to distribute software
requirements to objects and must be able to establish a detailed object-
oriented design representation that can be easily understood by program-
mers. They must be clearly aware of the cost/schedule ramifications of
their designs.

Programmers must not only have advanced knowledge of how to establish Ada
code, but also should have adequate (if not comprehensive) knowledge of the
object-oriented approach to the development of Ada software. They must
correctly interpret the design representation and transform it into
detailed Ada code. They then must rigorously test the code to assure that
it accurately implements the design established by a software engineer.

Software test engineers must have sufficient knowledge of the object-
oriented approach to the development of Ada software to effectively inte-
grate and test implemented objects, upon their release by programmers.
They must be able to map software requirements specified in a Software
Requirements Specification (DI-MCCR-80025) into test stimuli that exercise
integrated object implementations.

Thus, instruction must be provided to different personnel associated with
an object-oriented Ada development effort. It is generally recognized that
such instruction must cover methodology, Ada programming support environ-
ments (APSEs) as well as language-unique considerations. However, the
level of detail of instruction provided to different personnel types will
vary, such as in the manner suggested in Table 10.

1.2 CHAPTER SCOPE

In this chapter, the use of SHARP abstracts to teach Ada software is
described in two major sections. The discussion addresses 'design
methodology' associated with object-oriented techniques and 'Ada language'
usage to implement object-oriented designs, but excludes discussion of
'APSEs.'

236

TABLE 10 LEVEL OF INSTRUCTION REQUIRED IN
OBJECT-ORIENTED ADA BY LABOR TYPE

LABOR TYPE

ADA PROGRAMMING
DESIGN SUPPORT ADA

METHODOLOGY ENVIRONMENTS (APSEs) LANGUAGE

M M L
H M I.
H H H
H H H

Project Managers
System/Test Engineers
Software Engineers
Programmers/QA Personnel

H - High Level of Instruction Required
M - Medium Level of Instruction Required
L - Low Level of Instruction Required

In Section 2, an overview of the use of SHARP for instruction appropriate
for project managers, system engineers and software test engineers is
provided. Such instruction primarily should introduce the concept of
object-oriented software development and the economics of the methodology.
This instruction can be accomplished independent of Ada code by using the
graphics of SHARP.

In Section 3, an overview of the use of SHARP for instructing software
engineers, programmers and software quality assurance personnel is pro-
vided. In this section, we address approaches to instruction in learning
specific steps in an object-oriented Ada design, the representation of that
design with SHARP abstracts, and the transformation of the design to AcLi
code. The traditional approach to Ada instruction is discussed, whereby
Ada is taught in a bottom-up manner (i.e., low level detail up to high
level structure). As an alternative and possible improvement over the
traditional approach, teaching Ada in a top-down manner is discussed (i.e.,
high level structure down to low level detail). The latter approach is
possible with the abstracts of SHARP, since Ada computer programs can be
completely represented by graphics in teaching technical concepts. Then,
once the technical concepts have been introduced, their implementation in
code can be taught.

2. ADA INSTRUCTION FOR PROJECT MANAGEMENT AND SYSTEM ENGINEERING PERSONNEL

This section addresses the level and depth of Ada-unique instruction appro-
priate for project management and system engineering personnel. It is
pointed out that such personnel should understand essential aspects of an
object-oriented Ada computer program, but not in terms of Ada syntax and
lexical units. Rather, it is suggested that the important concepts asso-
ciated with object-oriented Ada efforts must be presented using a level of
abstraction higher than Ada code --a level free of confusing detail.

237

We feel SHARP abstracts provide a mechanism for teaching Ada concepts that
can be understood by management and system engineers, without introducing
code detail beyond their scope of comprehension and need.

As we have already stated, experience has proven that software projects not
understood tend to go astray. Typically, initial budgets tend to be
insufficient and resource allocation inappropriate. Accordingly, it is
important that basic concepts of Ada-unique object-oriented software be
taught to management and system engineering personnel.

2.1 ADA INSTRUCTION APPLICABLE TO PROJECT MANAGERS

Project managers are responsible for managing a large and complex system
acquisition. Government managers direct the preparation of the
System/Segment Specification (DI-CMAN-80008) and establish proper funding
for the acquisition. They are responsible for approval of software
requirements and design specifications, test procedures and ultimate
acceptance of the system.

Contractor project managers interface with government managers and direct
the development of the system. Contractor project managers, responsible
for software development, plan and direct software-related work. The
plann

The d

ng activity encompasses:

Defining goals, budgets, and schedules for the acquisition
of a Computer Software Configuration Item (CSCI)

Identifying needed personnel, development facilities, and
other resources

Investigating and evaluating costs, resources, and the
availability of these resources

Developing plans for using available resources to satisfy
CSCI development objectives

Estimating costs for the resources identified by the
plans.

rection activity encompasses:

Staffing the CSCI acquisition

Supervising personnel and appraising performance

Reviewing documentation

Evaluating expenditures versus budgets

Checking accomplishments versus scheduled events

Checking progress and addressing problems encountered

Instigating changes to goals, budgets, and schedules to
assure that any detected budget overruns and schedule slips
are minimized

238

• Introducing changes to goals, budgets, and schedules to
satisfy management or the government

• Informing responsible project directors of any slips in CSCI
acquisition schedules and budgets that cannot be corrected.

There are a multitude of issues that software project managers must con-
sider, as discussed in the Program Manager's Guide to Ada. Clearly,
project managers must understand the concept of object-oriented Ada soft-
ware development, and the cost ramifications of this approach, to intel-
ligently address the multitude of Ada-related issues.

2.1.1 Instruction for Project Managers in Object-Oriented Ada-Unique
Concepts

Although project managers typically should not be expected to learn Ada
lexical units and syntax, they should be very familiar with the material
presented in Chapter I. For example, they should be aware of the basic
building blocks of an Ada computer program -- the program units called
subprograms, tasks and packages. They should be aware of how these program
units are used to establish processes. As discussed in Section 3 of
Chapter I, SHARP pictographs can be used to represent an Ada computer
program at this high level, such as in the manner shown in Item a of Figure
99. As this figure illustrates, the SHARP graphic illustrates concurrently
executing process tasks that are declared in the main Ada program to
service such things as communication links, terminals, work stations and
interfacing microprocessors.

The project managers should also be taught basic concepts for process
implementation in an object-oriented manner, at the level of detail shown
in Chapter III. As discussed in this chapter, requirements assigned to
each process should be distributed among objects. The objects can be
implemented using Ada packages or tasks, and should be loosely coupled.
The SHARP abstracts shown in Items b and c of Figure 99 can be used to
explain these concepts to project managers.

2.1.2 Instruction for Project Managers in Ada-Unique Cost/Schedule
Estimation

Project managers should also be taught the cost ramifications of the
object-oriented approach to software development versus traditional
approaches. It is important that they understand how existing cost models
can be used in estimating the cost of object-oriented Ada software, and
when they must not be used. This is critical to the project managers
establishing meaningful budgets and schedules, and projections for the time
and cost at completion.

2.2 ADA INSTRUCTION APPLICABLE TO SYSTEM ENGINEERS

System engineers collect, define and evaluate system requirements, many of
which must be implemented in software. System engineers in the government
interview users, higher headquarters and other agencies authorized to
specify system requirements. They document the requirements in a System/-
Segment Specification, in accordance with DI-CMAN-80008.

239

COMM
LINK

/

TERMINALS

/r-r~, ,a=2^ .*£==£.

WORK WORK
STATION STATION

A 8

_L
COMM

TEXT_IO_P1

z
MAIN

WS_B

MICROPROCESSOR A

(a) REPRESENTING PROCESSES ESTABLISHED IN THE MAIN PROGRAM

FIGURE 99. SHARP REPRESENTATION OF A COMPUTER PROGRAM AT
A HIGH LEVEL

240

Layer 1

NOTIFY..
OPERATOR

(a) Package TRANS-HANDLER Pi

ED
/a

ABORT_
TRANS

P2

START.
BEG

START .
BKPT

PS
(b) Package ABORT_HANDLER

Layer 2

(c) Package RECOVERY HANDLER

(b) ADA PACKAGES USED TO ENCAPSULATE OBJECT IMPLEMENTATIONS

FIGURE 99. (CONTINUED)

241

P2

/

ABORT..
TRANS

WORK
STATION

MAIN

•A •v
/

/

ROCESSIN
TRANS

NOTIFY_
OPERATOR

V

START.
BEG

START.
BKPT

P3

(c) INTERACTION OF OBJECT IMPLEMENTATIONS

FIGURE 99. (CONCLUDED)

242

Contractor system engineers receive and interpret the System/Segment
Specification. They prepare a Software Requirements Specification in
accordance with DI-MCCR-80025 and an Interface Requirements Specification
in accordance with DI-MCCR-80026. Their definition activities encompass:

• Drafting operational concepts and deployment plans

• Defining operational mode requirements including rules for
transition from one operational mode to another

• Defining system inputs and outputs, and defining operations
on inputs to produce outputs

• Specifying categories of performance including precision,
accuracy, reliability, and maximum allowable processing time
(i.e., time to produce an output from inputs)

• Specifying external interface requirements, including
specific interface with other systems, information flow and
data rates across each, and conditions affecting information
flow

• Specifying man-machine interfaces, including display
legibility and man-machine dialogue

• Defining design constraints, including required
architectural features, memory constraints, algorithms, and
function allocations

• Defining the testing requirements against which detailed
system test plans and procedures must be written

• Defining cost and schedule constraints, including cost
limits and delivery dates.

The evaluation activities encompass:

• Organizing proposed requirements (e.g., classifying
collected requirements by source, type, and version)

• Interpreting and restating obscure requirements as necessary
to clarify them

• Restating requirements in formal memoranda and working
papers for informal validation by representatives of the
government

• Reviewing and revising the requirements based on feedback
from the government.

The approach to establishing and presenting software requirements by a
system engineer should be undertaken with knowledge of how these require-
ments will be implemented in an object-oriented Ada-unique manner. As is
the case for a project manager, system engineers must understand the

!43

concept of object-oriented Ada software development, and the cost ramifica-
tions of this approach. In addition, they must understand how to effi-
ciently test an object-oriented Ada computer so that they can draft effec-
tive test plans, procedures and reports.

2.2.1 Instruction for System Engineers in Object-Oriented Ada-Unique
Concepts

As is the case for project managers, system engineers typically should not
be expected to learn Ada lexical units and syntax. However, they must have
sufficient knowledge of object-oriented Ada-unique concepts to properly
specify requirements in a manner that easily leads to distribution of
requirements among processes and objects, and the development of procedures
needed to test the implementation of the requirements.

Accordingly, like the project manager, they must be taught the basics of
Ada presented in Chapter I and the fundamentals of an object-oriented
design demonstrated in Chapter III.

2.2.2 Instruction for System Engineers in Testing Object-Oriented Ada
Software

In addition, system engineers responsible for software testing must be
taught how to test an object-oriented Ada computer program. DOD-STD-2167
and its companion test-unique data item descriptions (DIDs) specify govern-
ment requirements for testing deliverable software. Testing of object-
oriented Ada software can be envisioned as a mapping of software require-
ments into test stimuli for a set of test cases. Special purpose test-
unique Ada packages are needed to produce the test stimuli and record
parameters passed between objects. The recorded data is compared to
expected values, either directly or after data reduction calculations.

System engineers should be familiar with issues associated with the test of
object-oriented Ada software, such as the material presented in Chapter VI.
They must be taught how to nominally test object-oriented software, where
stimuli and operating conditions are typical of those to be experienced by
the software in an operational "real world" environment. They must be
taught how to stress test object-oriented software, where stimuli and
operating conditions are extreme, unusual or even erroneous. They must be
taught how to test the performance of object-oriented software over long
time periods, to see if it fails with time and to identify patterns and
biases in results that may set in with time.

As discussed in Chapter VI, SHARP abstracts can be used to explicitly
represent test configurations. For example, the SHARP Invocation Diagram
shown in Figure 100 represents object implementations encapsulated within
Ada packages and special test software, which is represented with shaded
pictographs. The test software provides environmental stimuli and records
parameters passed between object implementations.

244

ENV_SIM

s!R_a

r~ *3PT

OBJ_REC

jR_d':

OBJ_REC

OPERATIONAL-SOFTWARE

p
OBJECT_P4

Main Program

• • Other Processes

Process under test

OBJECT_P1

P1

OBJECT_P2

P2

OBJECT_P3

m r
 I...

jFLe

MR-t

OBJECT_P5

P5

OBJ_REC

FIGURE 100. SHARP REPRESENTATION OF TEST SOFTWARE

•45

2.2.3 Instruction for System Engineers in Ada-Unique Cost/Schedule
Estimation

As is the case for project managers, system engineers should be fully aware
of the cost ramifications of object-oriented software, as discussed in
Chapter VII. They also must be aware of the cost ramifications of the
tests they specify, and the dangers if the tests are not adequate.

3. ADA INSTRUCTION FOR SOFTWARE ENGINEERS AND PROGRAMMERS

Software engineers are responsible for developing an object-oriented
Ada-unique design that can be used to map system requirements assigned to
software to implementing code. The design is presented in the following
documents:

• Software Top-Level Design Document (DI-MCCR-80012)

• Software Detailed Design Document (DI-MCCR-80031)

• Interface Design Document (DI-MCCR-80027)

• Data Base Design Document (DI-MCCR-80028)

Programmers are responsible for mapping the design of an object
implementation into Ada source code and rigorously testing the code.

This section addresses the level and depth of Ada instruction appropriate
for software engineers and programmers. It is pointed out that such
personnel should understand design issues and the associated cost ramifi-
cations, as well as the details of coding with the Ada language. With
SHARP, Ada code can be taught in the context of the overall design
structure. The graphical aids supplied by SHARP provide mental pictures to
a student for complex technical concepts. Having a full knowledge of these
concepts is a prerequisite to learning the effective use of Ada

3.1 TEACHING ADA IN A BOTTOM-UP MANNER

Often textbooks and seminars on Ada present the Ada language in a bottom-up
manner. With this approach, the "nut and bolts" of code are initially
described -- the lexical units and syntax of Ada. Then, for example,
typing, statements and Ada blocks might be presented. These aspects of Ada
then might be used to describe Ada program units and data structures.
Finally, such things as exception handling, generics, I/O and low level
programming are presented.

Thus, if an instructor presents a course on Ada using the sequence of
instruction presented in such textbooks, Ada is used to teach Ada in a
bottom up manner. Code is taught in terms of code. When the bottom up
approach to teaching Ada is used, we believe the SHARP graphics would help
to introduce the technology associated with the use of Ada. For example,
we believe the SHARP graphics will be useful in teaching the implementation
of data structures with Ada -- especially the visibility of data.

246

Figure 101 illustrates the visibility of constants and variables found in
packages. Variables and constants declared in the specification of a
package can be completely visible, private or limited private. As shown in
Item a of Figure 101, the geometric figures used to represent types,
variables and constants in a SHARP Data Structure Diagram are unshaded when
visible and partially shaded when private. In Ada, when a parameter is
private, a user is excluded from applying operations on the parameters
other than those operations defined within the package specification. The
only exception to this rule is assignments and tests for equality and
inequality, which can be made.

As shown in Item b of Figure 101, the geometric figures used to represent
types, variables and constants in a SHARP Data Structure Diagram are shaded
when not visible, having been declared in the body of a package.

The use of such SHARP graphics will provide a pictorial image in the mind
of the student for the data structure implemented with an Ada package. The
mental image of such a data structure should be easier to learn and
remember than the image supplied by code, especially since the student will
not have initially mastered the varied and subtle rules of Ada (e.g.,
syntax and lexical units applicable to type declarations, constant declara-
tions and variable declarations).

We feel that SHARP graphics will be a very effective aid when teaching Ada
in a bottom-up manner. The mental images supplied by the graphics will
help the student understand the code being taught.

3.2 TEACHING ADA IN A TOP-DOWN MANNER

Teaching Ada in a bottom-up manner is a "bootstrap" operation. Ada code is
used to teach other code. We feel there are shortcomings associated with
teaching Ada in this manner. For example, if the student has not mastered
one aspect of the code (which can happen on a short "shotgun" course in
Ada), the lessons dependent upon that unlearned code may also go unlearned.
Also, the student is learning Ada independent of the context of a design
methodology and its cost ramifications. For example, data structure
visibility may be taught independent of adequate understanding of
information hiding in object implementations, an important principle in the
development of software in an object-oriented manner.

We feel that large and complex Ada software should be built in an object-
oriented manner. As discussed in Section 1.2, this approach is needed in
order to control complex dependency relationships between variables, types
and program units. In addition, the use of this approach can reduce
problems introduced by the fact that Ada compilers are slow relative to
compilers for most other high order languages, due in part because they
make extensive checks of the complex dependencies. Using the object-
oriented approach, a large and complex Ada computer program is constructed
using a set of loosely coupled objects. The implementation of each object,
can be thought of as separate small software acquisition. Being small
relative to the overall software product, the object implementation can be
compiled and recompiled in a timely manner.

247

SAMPlE_P10

PU^A_|P10) PU_B_(P10)

.'234

Dan
123* S67 89

/
' i 1 < S 6 7 « 9 10 H 12

wwwwwwwwwwu

TYPE SUBTYPE
DECLARATIONS

CONSTANT
DECLARATIONS

VARIABLE
DECLARATIONS

(a) VISIBILITY OF DECLARATIONS MADE IN A PACKAGE'S SPECIFICATION AND BODY

SAMPLE_P10

PU_A_lP'0) PU_B_(P10I PU_C_lPiO) PU_D_(P10|

3 4 5 6

mi
#//
11 -2 '3 '4 -5

\v\\\

TYPE SUBTYPE
DECLARATIONS

CONSTANT
DECLARATIONS

VARIABLE
DECLARATIONS

(10 VISIblMIYOI ULCLARAIIONSMADr IN APAr.KAGFT.nODY

nniinc mi VKIRII ITY np viniARi F rnNSTANT AND TYPE DECLARATIONS

However, it is not possible to teach Ada in a top-down manner without an
easily understood notation for Ada other than Ada source code itself. SHARP
provides such a notation. The remainder of this section describes the
scope of a set of lessons that could be used to teach Ada in a top-down
manner in the context of an object-oriented design using the graphical
notation of SHARP.

3.2.1 Lesson 1 - Process Abstraction

The first lesson describes the basic building blocks of an Ada computer
program -- the program units called subprograms, tasks and packages. It
introduces the basic pictographs of SHARP used to represent the program
units.

Then, the student is taught how the designer of a large and complex
computer program typically, as an initial step in the design process,
identifies processes needed to establish concurrent processing threads.
The implementation of the processes with Ada tasks is taught using the
SHARP pictographs, such as those shown in Figure 98.

After having been taught basic technology of process abstraction using
SHARP, the student is then ready to learn the Ada source code associated
with this technology. To complete the lesson, the student is taught this
code. For example, the basic code in Figure 102 could be used to complete
this lesson.

3.2.2 Lesson 2 - Process Interaction

The second lesson introduces the task rendezvous, the Ada mechanism for
intertask communication and, therefore, communication between processes.
Task rendezvous is consummated by the callee (or acceptor task) after being
initiated by a caller task. Parameters are passed between the caller and
callee during the rendezvous, as represented by SHARP in the manner shown
in Figure 103. As the figure shows, the parameters are passed from the
caller to the acceptor via the in, out, or in out modes. Entry points in
an acceptor task are shown as small parallelograms in the acceptor. Arrows
are used to represent each of the three entry modes. Circles on these
arrows represent the parameters being transferred.

After having been taught the basic technology of process interaction via
task rendezvous using SHARP, the student is then ready to learn the Ada
source code associated with this technology. To complete the lesson, the
student is taught this code. For example, the basic code in Figure 104
could be used to commence this discussion. Then more advanced code can be
presented to explain code-related technical details associated with the
implementation of process interaction.

249

with TEXT_IO;
use TEXT_IO;
procedure MAIN is

task COMM;
task body COMM is separate;

task TERMINAL;
task body TERMINAL is separate;

task WS_A;
task body WS_A is separate;

task WS_B;
task body WS_B is separate;

end MAIN;

FIGURE 102. BASIC ADA CODE USED TO ESTABLISH PROCESSES

3.2.3 Lesson 3 - Object Implementation within Processes

The third lesson introduces the important concept of information hiding,
which is fundamental to the implementation of object-oriented designs.

The lesson commences with a discussion of the basic concepts for the
establishment of an object-oriented design (e.g., those described in
Section 2.2 of Chapter II). The student must be presented the technical
reasons for the object-oriented approach to software development (i.e., the
control of complex dependencies between variables, types and program units)
and the cost ramifications of this approach (i.e., significant cost
reduction as compared to traditional approaches for large and complex
computer programs). Presumably these facts have already been taught to the
students in a preceding course, but should be reviewed as part of Lesson 3.

Next, the student must be taught how information hiding capabilities of Ada
packages and tasks are used to encapsulate program units introduced to
implement requirements assigned to each object.

The basic pictographs of SHARP can be used to help teach the technical
concepts for object implementation, using information hiding capabilities
inherent in Ada packages and tasks. For example, Figure 105 shows an Ada
package, which contains a visible program unit introduced to facilitate
communication with another object implementation, and which contains a
local data structure not accessible to other objects. A visible data
structure is also provided to account for the declaration of parameters
passed to and received from other objects. The processing unique to this
object implementation is hidden in the bodies of the communicating program
units. Lessons for the implementation of the internal complexities of an
object are described in Sections 3.2.7, 3.2.8 and 3.2.9.

250

FIGURE 103 SHARP REPRESENTATION OF PROCESS INTERACTION
(TASK RENDEZVOUS)

251

with TEXT_IO;
use TEXT_IO;
procedure MAIN is

task COMM;
task body COMM is separate;
task TERMINAL;
task body TERMINAL is separate;
task WS_A;
task body WS_A is separate;
task WS_B is

entry ENTRY_B (PAR 1: in INTEGER;
PAR 2: in out INTEGER);

end WS_B;
task body WS_B is separate;

end MAIN;

--ESTABLISH 1ST PROCESS WITH TASK COMM

separate (MAIN)
task body COMM is

begin

end COMM;

•ESTABLISH 2ND PROCESS WITH TASK TERMINAL

separate (MAIN)
task body TERMINAL is

begin

end TERMINAL;

FIGURE 104. BASIC ADA CODE USED TO PASS PARAMETERS BETWEEN PROCESSES

252

-ESTABLISH 3RD PROCESS WITH TASK WS A

separate (MAIN)

task body WS_A -- caller task

begin

WS_B. ENTRY_B (PAR1, PAR2);

end WS A;

-ESTABLISH 4TH PROCESS WITH TASK WS B

separate (MAIN)

task body WS_B is -- Acceptor Task

begin

accept ENTRY_B (PAR1: in INTEGER; PAR2: in out INTEGER) do

end ENTRY_B;

end WS B;

FIGURE 104. (CONCLUDED)

253

ED

m
/-ED

NOTIFY.
OPERATOR

Package TRANS-HANDLER Pi

IWI
ABORT_
TRANS

////

P2

CZZZJ
START.
BEG

START.
BKPT

///

P3
Package A80RT_HANDLER Package RECOVERY_HANDLER

FIGURE 105 OBJECT IMPLEMENTATION IN AN ADA PACKAGE

254

After having been taught the basic technology for object implementation
using SHARP, the student is then ready to learn the Ada source code asso-
ciated with this technology. To complete Lesson 3, the student is taught
the code used for object implementation.

For example, the basic code shown in Figure 106 (which is associated with
Figures 98 and 99) could be used to commence this discussion and then more
advanced code can be presented to explain code-related technical details
associated with object implementation.

--MAIN PROGRAM

with TEXT_I0;
use TEXT_I0;
procedure MAIN is

task COMM;
task body COMM is separate;
task TERMINAL;
task body TERMINAL is separate;
task WS_A;
task body WSA is separate;
task WS_B is

entry ENTRY_B (PAR 1: in INTEGER;
PAR 2; in out INTEGER);

end WS_B;
task body WS_B is separate;

end MAIN;

--ESTABLISH 1ST PROCESS WITH TASK COMM

separate (MAIN)
task body COMM is

package AB0RT_HANDLER_P2 is OBJECT P2
procedure ABORTJTRANS (...);

end AB0RT_HANDLER_P2 is
package body AB0RT_HANDLER_P2 is

procedure ABORT_TRANS (...) is separate;
end ABORT HANDLER P2;

package REC0VERY_HANDLER_P3 is
procedure START_BEG (
procedure START_BKPT (

•OBJECT P3
);
);

end REC0VERY_HANDLER_P3;
package body REC0VERY_HANDLER_P3 is

procedure START_BEG (...) is separate;
procedure START_BKPT (...) is separate;

end RECOVERY HANDLER P3;

FIGURE 106. BASIC ADA CODE FOR OBJECT IMPLEMENTATION:

255

with AB0RT_HANDLER_P2 OBJECT PI
use AB0RT_HANDLER_P2;
with REC0VERY_HANDLER_P3;
use REC0VERY_HANDLER_P3;
package TRANS_HANDLER_P1 is

procedure NOTIFY_OPERATOR (...);

end TRANS_HANDLER-P1;
package body TRANS_HANDLER_P1 is

procedure NOTIFY_OPERATOR (...) is separate;

end TRANS_HANDLER_P1;

--OBJECT P2 IMPLEMENTATION WITHIN PROCESS TASK COMM

separate (MAIN.COMM. AB0RT_HANDLER_P2)
procedure ABORT_TRANS (...) is

begin

end ABORT_TRANS;

--OBJECT P3 IMPLEMENTATION WITHIN PROCESS TASK COMM

separate (MAIN.COMM. RECOVERY_HANDLER_P3)
procedure START_BEG (...) is

begin

end START_BEG;
procedure START_BKPT (...) is

begin

end START_BKPT;

--OBJECT PI IMPLEMENTATION WITHIN PROCESS TASK COMM

separate (MAIN.COMM. TRANS_HANDLER_P1)
procedure NOTIFY OPERATOR (...) is

begin

if TRANS_ID = ABORT then
ABORT_TRANS (...)

elsif TRANS_ID - RESTART then
START_BEG (...);

else
START_BKPT (...);

end if;

end NOTIFYJDPERATOR;
begin

end COMM:

FIGURE 106. (CONCLUDED)

256

3.2.4 Lesson 4 - Object Data Structure

An object implementation has a local data structure shared by the program
units used to implement the object. The local data structure is not
accessible by other object implementations. A small visible data structure
is also provided for defined types and variables established to facilitate
parameter passing to other object implementations.

The student must be taught the contents of the data structure. SHARP Data
Structure Diagrams can be used to help teach the technology for establish-
ing data structures for an object implementation. As shown, declaration of
defined types, constants and variables are represented by narrow geometric
entities, either upright or slanting to the to the right or left. As
illustrated in Figure 107, the visibility of the data structure entities
are driven by where they are declared. Shaded data structure entities have
been declared within the body of the package and, therefore, are not
accessible by program units external to the package. Unshaded or partially
shaded entities have been declared within the specification of the package
and, therefore, are accessible to external program units. Entities that
are partially shaded have been designated as private or limited private.

When the value of a private parameter is passed from one object implementa-
tion to another, the receiver object implementation can only use the para-
meter in assignment statements, statements testing for equality and opera-
tions defined within the package specification. If the passed parameter is
limited private, assignment statements and statements testing for equalitv
are no longer automatically available to the user.

Parameters passed between objects may be declared to be private or limited
private in the specification of the package encapsulating the object
implementation, especially if they are used in the formulation within the
implementation.

The local data structure is established in the body of the encapsulating
package. Therefore, entities of this data structure are not accessible by
other object implementations. As illustrated in Figure 107, all the
entities in this data structure are shaded, signifying the lack of accessi-
bility outside the package.

As described in Section 2.4.4 of Chapter II, the object's local data
structure may contain an array or record, and may contain discriminated,
access or task types. In Ada, an array is defined to be a collection of
entities of the same type. A defined type for an array is signified by the
letters 'AR'. A record is defined to be a collection of entities of
possibly two or more types, where the entities are determinable at compile
time (as opposed to an array entity which can be established dynamically
during run time). A defined type for a record is signified by the letter
'R' .

As an alternative to statically allocated data, Ada provides a mechanism
for allocating variables dynamically during program execution. Since the
storage locations used for dynamic variables are not determined in advance,
they cannot be referenced by a name but must instead be referenced

257

VISIBLE DATA STRUCTURE

TYPE 1 2 TYPE/SUBTYPE

1. TRANSACTION_TYPE
2. STATUS-TYPE HS

DECLARATIONS

CONSTANT

VARIABLE EN I

1 2
DECLARATIONS

1.TRANS-I0
2. STATUS

^^ VARIABLE
Tl T2 DECLARATIONS

A / TYPES

/ » i. CONSTANT_T1

2. PRESSURE T2

/// 6
3. TEMPT3

4. STATE_T4

CONSTANTS

1. MAX

2. MIN

3. NORMAL

/// Q
VARIABLES

1. LOWER_PRESSURE

2. UPPER_PRESSURE

3. UPPER_TEMP

PACKAGE A80RT HANDLER_P2 1.
4. LOWER_TEMP

5. LOWER_STATE
K 1 6. UPPER_STATE

LOCAL DATASTRU CTURE /

1 2 3 4

TYPES/ • 111 • SUBTYPES HI i
RL RL RL EN

1 2 3

CONSTANTS

T1 Tl Tl -
1 2 3

m m i&&
4 5 6

VARIABLES HI XH
T2 T2 T3 T3 T4 T4

-

FIGURE 107. DATA STRUCTURE FOR OBJECT IMPLEMENTATIONS

258

indirectly via a so-called access type. Unknown amounts of data can be
handled by dynamically allocating a storage to each new datum when it is
received. In this way, complex data structures can be built with
components dynamically allocated. An access type is represented by an
upright narrow rectangle with the letters "AC" underneath it.

A task type is formed when the keyword task is followed by the keyword
type. Elaboration of the corresponding task body defines what a task of
that type does. It does not cause a task to be activated. Rather, tasks
are activated separately by declaring variables of the task type. A task
type is represented by an upright narrow rectangle with the letter "T"
underneath it.

In general, the type of a variable or constant can be represented in SHARP
Data Structure Diagrams as follows:

o If the type is predefined, then the first letter of the type
(e.g., I for INTEGER) is placed under the geometric
representation of the variable or constant.

o If the type is defined, the letter "T" followed by the type
glossary number is placed under the geometric representation
of the variable or constant.

Having been taught the basic technology for object data structures with the
aid of SHARP Data Structure Diagrams the student is then ready to learn the
Ada source code associated with this technology. To complete Lesson 4, the
student is taught the code used to establish a data structure. For example,
the basic code shown in Figure 108 (which corresponds to Figure 107) could
be used to commence this discussion. Then more advanced code can be
presented to explain code-related technical details associated with data
structure implementation.

3.2.5 Lesson 5 - Interaction of Object Implementations

Parameters can be passed from one object to another. If object implementa-
tions are encapsulated in Ada tasks, the task rendezvous is used to accom-
plish the object interaction. The teaching of task rendezvous was
discussed in Lesson 2 (Section 3.2.2), in the context of process inter-
action. Object implementations hidden in Ada packages interact using
communicating subprograms declared in the packages specification. Item b
of Figure 99 uses a SHARP Invocation Diagram to illustrate communication
between object implementations, for the set of object implementations shown
in Item a of Figure 99.

The specific parameters passed between object implementations can be
represented by SHARP Data Flow Diagrams, as shown in Figure 109. As shown,
three modes of parameter passing are possible, as is the case with task
rendezvous. Specifically, the modes are as follows:

259

--MAIN PROGRAM

with TEXT_10;
use TEXT_IO;
procedure MAIN is

task COMM;
task body COMM is separate;
task TERMINAL?:
task body TERMINAL is separate;
task WS_A;
task body WS_A is separate;
task WS_B is

entry ENTRY_B (PAR1: in INTEGER;
PAR2: in out INTEGER);

end WS_B;

task body WS_B is separate;

end MAIN;

--ESTABLISH 1ST PROCESS WITH TASK COMM

separate (MAIN)
task body COMM is

package AB0RT_HANDLER_P2 is OBJECT P2

--VISIBLE DATA STRUCTURE
type TRANSACTI0NJT1 is private;
type STATUS_T2 is private;
TRANS_ID: TRANSACTI0N_T1;
STATUS: STATUS_T2;
private

type TRANSACTION_TI is (RESTART, BREAKPOINT, ABORT);
type STATUS_T2 is (RESTART_COMPLETE, NO_RESTART,

BREAKPOINT_COMPLETE, NO_BREAKPOINT, ABORT_COMPLETE,
NO_ABORT);

procedure ABORT_TRANS (...);

end ABORT HANDLER P2;

FIGURE 108. BASIC ADA CODE FOR THE DATA STRUCTURE
OF AN OBJECT IMPLEMENTATION

260

package body AB0RT_HANDLER_P2 is

--LOCAL DATA STRUCTURE
--types
type CONSTANT_Tl is INTEGER range 1 ... 100;
type PRESSURE_T2 is INTEGER range 22 ... 35;
type TEMPJT3 is INTEGER range 1 ... 120;
type STATE_T4 is (ON, OFF, PENDING);
-- constants
MAX: CONSTANTJTl:- 90
MIN: C0NSTANT_T1:« 70
NORMAL: CONSTANT:- 80
--variables
LOWER_PRESSURE: PRESSURE_T2;
UPPER_PRESSURE: PRESSURE_T2;
UPPERJTEMP: TEMP_T3;
LOWER_TEMP: TEMP_T3;
LOWER_STATE: STATE_T4;
UPPER_STATE: STATE_T4;

procedure ABORT_TRANS (...) is separate;
end ABORT_HANDLER_P2;

o
o
o

FIGURE 108. (CONCLUDED)

261

CALLING PROCEDURE NOTIFY OPERATOR FOR OBJECT IMPLEMENTATION IN PACKAGE P1

NOTIFY_
OPERATOR

t* P1

NOTIFY_
OPERATOR

TRANS _ID
STATUS

H

ABORT.
TRANS

P2

PI

NOTIFY_
OPERATOR

TRANSJD
STATUS fi

START.
BEG

P3

P1

TRANS_ID
STATUS

START.
BKPT

P3

FIGURE 109. DATA FLOW BETWEEN SUBPROGRAMS

262

o 'in' (i.e., the value of a parameter is received and not
modified)

o 'out' (i.e., the value of a parameter is created and
exported)

o 'in out' (i.e., the value of a parameter is received,
modified and exported).

Having been taught the basic technology for object interaction using SHARP
Invocation Diagrams and Data Flow Diagrams, the student is then ready to
learn the Ada source code associated with this technology. To complete
Lesson 5, the student is taught the code used for the interaction of object
implementations. For example, the basic code shown in Figure 110 (which
corresponds to Figure 109) could be used to commence this discussion. Then
more advanced code can be presented to explain code-related technical
details associated with data passage between subprograms. In this example,
values for the variable TRANS_ID are passed between the calling subprogram
and the called subprograms using the 'in out' mode. Also, values for the
variable STATUS are sent from the called subprogram to the caller using the
'out' mode.

•MAIN FROGRAM

with TEXT_I0;
use TEXT_I0;
procedure MAIN is

task COMM;
task body COMM is separate;
task TERMINAL is separate;
task body TERMINAL is separate;
task WS_A;
task body WS_A is separate;
task WS_B;
task body WS_B is separate;

entry ENTRY_B (PAR1: in INTEGER;
PAR2: in out INTEGER);

end WS_B;

task body WS_B is separate;

end MAIN;

FIGURE 110. BASIC ADA CODE FOR PARAMETER PASSING
BETWEEN SUBPROGRAMS

263

ESTABLISH 1ST PROCESS WITH TASK COMM

separate (MAIN)
task body COMM is

package AB0RT_HANDLER_P2 is OBJECT P2 IMPLEMENTATION

--VISIBLE DATA STRUCTURE
type TRANSACTION_Tl is private;
TRANS_ID: TRANSACTIONJT1;
STATUS: STATUS_T2;
private

type TRANSACTION_Tl is (RESTART, BREAKPOINT, ABORT);
type STATUSJT2 is (RESTART_COMPLETE, NO_RESTART,

BREAKPOINT_COMPLETE, NO_BREAKPOINT, ABORT_COMPLETE,
NO_ABORT);

procedure ABORT_TRANS (TRANS_ID: in out TRANSACTION_T1;
STATUS: out STATUS T2);

end ABORT HANDLER P2;

package body ABORT_HANDLER_P2 is

--LOCAL DATA STRUCTURE
type C0NSTANT_T1 is INTEGER range 1 ... 100;
type PRESSURE_T2 is INTEGER range 22 ... 35;
type TEMP_T3 is INTEGER range 1 ... 120;
type STATE_T4 is (ON, OFF, PENDING);
- - constant
MAX: CONSTANTJT1:- 90
MIN: CONSTANTJTl:- 70
NORMAL: CONSTANT:= 80
--variables
LOWER_PRESSURE: PRESSURE_T2;
UPPER_PRESSURE: PRESSURE_T2;
UPPER_TEMP: TEMP_T3;
LOWER_TEMP: TEMP_T3;
LOWER_STATE: STATEJT4;
UPPER_STATE: STATE_T4;

procedure ABORTJCRANS (TRANS_ID: in out TRANSACTIONJTl;
STATUS: out STATUS_T2) is separate:

end ABORT HANDLER P2;

FIGURE 110. (CONTINUED)

264

package REC0VERY_HANDLER_P3 is OBJECT P3 IMPLEMENTATION
procedure START BKC (TRANS ID: In out TRANSACTION T1;

STATUS: out STATUS_T2) is separau ;
procedure START_BKPT (TRANS_ID: in out TRANSACTION_T1;

STATUS: out STATUS_T2) is separate;

end REC0VERY_HANDLER_P3;
package body REC0VERY_HANDLER_P3 is

pi ,,,'c.im O rsTAPT iM.r.- (TRANS in in ,,,,i TRANSACTION TI .
STATUS: out STATUS_T2) is Sfepmnie,

end REC0VERY_HANDLER_P3;

with AB0RT_HANDLER_P2;
use AB0RT_HANDLER_P2;
with REC0VERY_HANDLER_P3;
use REC0VERY_HANDLER_P3;

package TRANS_HANDLER_P1 is OBJECT PI IMPLEMENTATION

procedure NOTIFY_OPERATOR (STATUS: in STATUS_T2;
TRANS_ID: in out TRANSACTIONJTl)
is separate;

end TRANS_HANDLER_P1;
package body TRANS_HANDLER_P1 is

procedure NOTIFY OPERATOR (STATUS: in STATUS T2;

ff/.r/s n>. (i n r.:r:-,vn .; n .
is separate;

end TRANS HANDLER T>1;

o
o
o

separate (MAIN.COMM)
procedure NOTIFYJDPERATOR is

begin

ABORTJTRANS (TRANS_ID->TRANSA, STATUS~>STATUSA);

START_BEG (TRANS_ID->TRANSB, STATUS->STATUSA);

START_BKPT(TRANS _ID->TRANSC, STATUS-^STATUSC);

end NOTIFY_OPERATOR;

FIGURE 110. (CONCLUDED)

3.2.6 Lesson 6 - Abstraction Internal to an Object Implementation

An object's requirements are typically sufficiently complex that abstrac-
tion must be introduced into the design of the object implementation, prior
to code implementation. For example, a small and easily comprehended
portion of the requirements can be assigned to one level for
implementation, while the rest of the requirements will be assigned to
other levels. At each of the other levels, the abstraction process can be
repeated.

With Ada, the implementation of detail excluded at one level is passed to
the bodies of called subprograms. The bodies of the called program units
are implemented in the same manner. Therefore, these bodies are also
constrained to an easily understood amount of detail, with yet lower detail
moved again to other called program units. In this way, a series of nested
program units are used to spread implementation detail into levels of
abstraction.

This abstraction process can be clearly represented by SHARP Hierarchy
Diagrams and SHARP Invocation diagrams. For example, the Hierarchy diagram
shown in Figure 111 represents nested program units assigned to levels.
The subject program unit (i.e., a subprogram visible in an Ada package used
to encapsulate an object implementation) is assigned to Level 1. Program
units directly nested within the subject program unit are assigned to Level
2. In general, a program unit directly nested within a program unit at
Level n is assigned to Level n+1.

The related Invocation Diagram is shown in Figure 112. It provides
information relevant to the sequence in which program units will execute.
For example, a call to a subprogram may be dependent upon certain
conditions having been met. As shown in Figure 112, the existence of
conditional calls is indicated by a tilde on the arrow representing the
potential program unit call.

Having been taught the basic technology for the internal abstraction of an
object implementation using SHARP Hierarchy and Invocation Diagrams, the
student is then ready to learn the Ada source code associated with this.
technology. To complete Lesson 6, the student is taught this code. For
example, the basic code shown in Figure 113 (which corresponds to Figures
111 and 112) could be used to commence this discussion. Then more advanced
code can be presented to explain code-related technical details associated
with abstraction internal to an object.

266

ABORT TRANS

FIGURE 111. HIERARCHY OF PROGRAM UNITS INTERNAL TO AN
OBJECT IMPLEMENTATION

267

ABORT TRANS

PU B3a PU B3b PU B3c

fu

PU B4c
PU_84d

P9

PU B5a

P10

FIGURE 112. INVOCATION OF PROGRAM UNITS INTERNAL TO AN

OBJECT IMPLEMENTATION

26c

o
o
o

OBJECT P2 IMPLEMENTATION

separate (MAIN.COMM.ABORT_HANDLER)
procedure ABORT_TRANS (TRANS_ID: in out TRANSACTION_T1;

STATUS: out STATUS_T2) is
procedure PU_B2a is separate;
task PU_B2b is

entry C;
entry D;

end task PU_B2b;
task body PU_B2b is separate

begin

end ABORT TRANS;

--OBJECT P2, Level 2, Unit a

separate (MAIN.COMM.ABORT_HANDLER.ABORTJTRANS)
procedure PU_B2 is

procedure PU_B3a is separate;

begin -- PU_B2a

end PU B2a;

-OBJECT P2, Level 2, Unit b

separate (MAIN.COMM.ABORT_HANDLER.ABORTJTRANS)
task body PU_B2b is

procedure PU_B3b is separate;
procedure PU_B3c is separate;

begin -- PU_B2b

end PU B2b;

FIGURE 113. BASIC ADA CODE FOR ABSTRACTION WITH PROGRAM
UNITS INTERNAL TO AN OBJECT IMPLEMENTATION

269

--OBJECT P2, Level 3, Unit a

separate (MAIN.COMM.ABORT_HANDLER.ABORT_TRANS.PU_B2a)
procedure PU_B3a is

procedure PU_B4a is separate;

begin -- PU_B3a

end PU_B3a;

--OBJECT P2, Level 3, Unit b

separate (MAIN.COMM.ABORT_HANDLER 2.ABORT_TRANS.PU_B2b)
procedure PU_B3b is

procedure PU_B4b is separate;

begin -- PU_B3b

end PU_B3b;

--OBJECT P2, Level 3, Unit c

with P9;
use P9;
separate (MAIN.COMM.ABORT_HANDLER.ABORT_TRANS.PU_B2b)
procedure PU_B3c is

procedure PU_B4c is separate;

begin -- PU_B3c

end PU_B3c;

--OBJECT P2, Level 4, Unit a

separate (MAIN.COMM.ABORT_HANDLER 2.ABORT_TRANS.PU_B3a)
procedure PU)_B4a is

begin -- PU_B4a

end PU B4a;

FIGURE 113. (CONTINUED)

270

-OBJECT P2, Level 4, Unit b

separate (MAIN.COMM.ABORT_HANDLER.ABORT_TRANS.PU_B3b)
procedure PU_B4b is

begin -- PU_B4b

end PU_B4b;

--OBJECT P2, Level 4, Unit c

with P10;
use P10;
separate (MAIN.COMM.ABORT_HANDLER.ABORT_TRANS.PU_B3c)
procedure PU_B4c is

begin -- PU_B4c

end PU B4c;

FIGURE 113. (CONCLUDED)

271

3.2.7 Lesson 7 - Implementing Processing Internal to Program Units

To establish the design for requirements abstracted to levels of program
units, SHARP utilizes annotated pseudo code to represent the bodies of the
program units. SHARP criteria include general standards for the pseudo
code and its annotation. The standards require the pseudo code to account
for the following:

• Logic and decisions
• Algorithms
• Program unit calls and I/O
• Generic instantiation
• Exception handling

The standards require that these entities must be presented using certain
Ada key words and annotation, as described in Section 2.5 of Chapter II.
The annotated pseudo code can be used to help teach Ada detail, as we reach
the bottom of the top-down description of Ada.

For example, consider Ada statements used for logic and decisions. The Ada
if and case statements are used to provide conditional control (i.e., the
selection of one of a number of alternate actions).

The if statement selects a course of action depending upon the truth value
of one or more conditions. In Ada, there are three basic forms of the if
statement:

• if-then
• if-then-else
• if-then-elsif

In each case , the If statement is terminated with an end if clause. SHARP
can be used to help teach the if statements, using annotated pseudo code
(e.g., as shown) in item a of Figure 114.

The case statement provides for the selection one of a set of multiple
alternative actions, as a function of the value of an expression. SHARP
can be used to help teach the case statement using annotated pseudo code
(e.g., as shown in item b of Figure 114).

Repetitive execution of action is accomplished in Ada using the loop
statement. The basic loop is accomplished using a loop and end loop
statement. To leave a loop, an exit statement is used. SHARP can be used
to represent the loop statement with annotated pseudo code (e.g., as
illustrated in item c of Figure 114).

To repeat a loop for a specific number of times, the basic loop can be
preceded by a for iteration clause. Also, another form of iteration can be
accomplished with the while statement, whereby a sequence of statements is
repeated as long as some condition is true. SHARP can be used to help
teach the for and while statements with annotated pseudo code (e.g., as
shown in item d of Figure 114).

272

Begin Procedure SAMPLE 2A

if Y>0 then

end if

if X>0 then

else

end if

if A-B then

elsif A-C then

else

end if

End Procedure SAMPLE A

(a) USE OF "IF" STATEMENTS

FIGURE 114. ANNOTATED PSEUDO CODE FOR REPRESENTING LOGIC AND
DECISIONSWITHIN THE BODIESOF PROGRAM UNITS

273

Begin Procedure SAMPLE_2B_

case TEST is

when PASS Call Procedure CONTINUE

when FAIL Call Procedure RESTART

end case ZL
End Procedure SAMPLE 2B

(b) USE OF "CASE" STATEMENT

Begin Procedure SAMPLE_2C_

loop

end loop_

loop

loop

end loop

end loop

End Procedure SAMPLE 2c

(c) USE OF "LOOP" STATEMENT

FIGURE 114. (CONTINUED)

274

Begin Procedure SAMPLE _2D

for 1-1,2, .. N

end loop

while B>0 loop

.1 i

1

mi i <II •[•

End Procedure SAMPLE 2D

(d) USE OF THE "FOR" AND "WHILE" STATEMENTS

Begin Procedure SAMPLE_5_

Call Procedure SENSOR
--it returns the parameter SENSOR_VALUK

raise exception

if SENSOR_VALUE>20 millivolts
if SENSOR VALUE<10 millivolts

exception handler

when SENSOR_VALUE<10
Call Procedure SOUND_ALARM

when SENSOR_VALUE>10
Call Procedure RESTART

end

End Procedure SAMPLE 5

(e) REPRESENTING EXCEPTIONS

275
FIGURE 114. (CONCLUDED)

As another example, consider exception handling with Ada. Ada provides an
explicit mechanism for detecting and responding to an anomaly. The
anomaly, for example, could be associated with erroneous input data or
overflow conditions. SHARP criteria require that the design of a program
unit's body must specify the detection of the anomaly and the course of
action taken after the occurrence of the anomaly.

In Ada, the detection of the anomaly causes normal program execution to be
suspended and control transferred to an exception handler. Once the
exception handler has completed its processing, control transfers to code
following the exception handler code.

Figure 114 provides an example of annotated SHARP pseudo code used to
specify the detection of an anomaly and action taken in an exception
handler. SHARP criteria requires that (a) the pseudo code for the anomaly
detection must be introduced by the key words 'raise exception' and must be
bracketed as shown in the figure, (b) the pseudo code for the action taken
upon occurrence of the anomaly must be introduced by the key words
'exception handler,' must be concluded with the key word 'end,' and must be
bracketed as shown in the figure, and (c) an arrow must point from the
bracket enclosing pseudo code for the anomaly detection to the bracket
enclosing pseudo code for the exception handler.

Having been taught the basic technology for entities implemented in the
body of a program unit through the use of annotated SHARP pseudo code, the
student is then ready to learn the Ada source code associated with this
technology. To complete Lesson 7 , the student is taught this code. For
example, the code shown in Figure 116, which implements the SHARP pseudo
code shown in Figure 115, can be used as the basis for this lesson.
Additional code can be presented when needed to explain details associated
with entities implemented in the bodies of program units.

3.2.8 Lesson 8 - Use of Existing Ada Packages and Packages of Common
Program Units

The basic SHARP pictograph for a package can be used to represent existing
Ada packages and Ada packages established to encapsulate common program
units (i.e., program units accessed by two or more other program units).
For example, in Ada, the predefined package TEXT_IO is used to facilitate
input and output. ("The use of TEXT_IO is explained in Chapter 15 of An
Introduction to Ada. ~)

Also, it is expected that software contractors will utilize existing
in-house packages in the implementation of large and complex Ada computer
programs. It is anticipated that in time contractors will build a library
of packages containing such things as hardware drivers, communication
protocols, low level I/O, mathematical functions and special purpose
application routines (e.g., Fast Fourier Transform).

In addition, packages will be developed to house program units common
within an object implementation, or in certain cases, common to more than
one object implementation.

276

With SHARP, such packages are represented in the manner shown in Figure
117. These diagrams identify visible program units declared in a package's
specification but the diagrams do not identify program units declared in
the package's body. Rather, SHARP uses its hierarchy and invocation
diagram to identify these program units, as described in Section 3.2.6 in
the context of abstraction internal to an object implementation.

As shown in Figure 117, SHARP abstracts represent a subject package's
access to existing packages, or packages containing common program units,
using the Ada 'with' clause. Each of the accessed packages is represented
by a small rectangle encapsulating its name, and a straight line drawn to
the specification or body (as appropriate) of the accessing package.

Having been taught the basic technology for accessing existing Ada packages
and packages of common program units using SHARP, the student is then ready
to learn Ada source code for this technology. To complete Lesson 8, the
student is taught this code. For example, the code shown in Figure 118 can
be used as the basis for this lesson.

3.2.9 Lesson 9 - Ada at the Bottom and Course Completion

After completing the first eight lessons, the student has been presented a
wide range of Ada design and implementation factors in a top-down manner.
As the student learned the technology of an object-oriented implementation
using SHARP, the related Ada syntax and other code detail was introduced on
an as needed basis. The final lesson summarizes the low level detail that
has been introduced and introduces detail not yet mentioned. This final
lesson can act as a bottom-up summary of what has been taught top-down.

To complete the Ada course, it is important to summarize important concepts
associated with the object-oriented approach to Ada software implementation
and the cost ramifications of this approach. The need for comprehensive
testing of individual objects must be stressed and basic steps in completing
such testing introduced. The object-oriented Ada software development will
be especially cost effective if individual object implementations are
relatively error free so that object integration proceeds smoothly, as
described in Chapter VI.

4. CHAPTER SUMMARY

This chapter describes the application of SHARP in teaching object-oriented
Ada technology to project managers and system engineers. It describes how
software engineers and programmers can be taught Ada in a top-down manner
using SHARP.

It is important that appropriate Ada instruction is given to project
managers and system engineers, as well as software engineers and
programmers. Of course, the level of detail and emphasis of this
instruction must vary in depth depending upon the target audience.
However, the gap in knowledge between contractor team members must be kept
small so that effective communication can take place during system
acquisition.

277

Begin Procedure SOFT_DEV_ESTIMATE

#SS - 0

for p - 1,2, ... P

for 0 - 1, 2, ... 0(p)

#DATA - # TYPES (p,o) + #CONSTS(p,o) + #VARS(p,o)

#PCALL - #SUBCALL(p,o) + #TASKS(p,o)

#PBOD - #INSPECT_COUNT(p,o)

DSI(p.o) - #DATA + #PCALL + #PBOD

#SS - #SS + DSI(p.o)

end loop .

end 1 nop ..,,.._ , .,.

if LANGUAGE - FORTRAN then

#SS - #SS*FORTRAN_CALIBRATE

else if LANGUAGE - JOVIAL then

#SS - #SS*JOVIAL_CALIBRATE _

else if LANGUAGE_ASSEMBLY then

*SS - #SS*ASSEMBLY_CALIBRATE

else

#SS - #SS*ADA_CALIBRATE

end if

raise exception

if #SS= 2000

©

FIGURE 115. EXAMPLE OF ANNOTATED PSEUDO CODE

278

case COCOM_MODE is

when ORGANIC ->

©
K - 2.4

E - 1.05

when SEMI_DETACHED ->

K - 3.0

E - 1.12 .

when EMBEDDED ->

K - 3.6

E - 1.2

L case

Call Procedure COST ESTIMATE

Call Generic Procedure SCHEDULE_EST1MATE ,

where

KGEN - K

EGEN - E

exception handler

Call Procedure MODULE_ESTIMATE

end exception handler ________

Package P10

End Procedure SOFT DEV ESTIMATE

FIGURE 115. (CONCLUDED)

279

with P10;

use P10;

procedure SOFT_DEV_ESTIMATE(...) is

TOO_SMALL:exception -- declare an exception

procedure ESTABLISH_TIME is new SCHEDULE_ESTIMATE

(KGEN - K, EGEN = E);--generic instantiation

begin

NO_SS :- 0

for P in 1 .. CAP_P

for 0 in 1 •• CAP_0

NO_DATA:= NO_TYPES(P,0) + NO_CONSTS(P,0) + NO_VARS(P,0);

NO_PCALL:= NO_SUBCALL(P,0) + NO_TASKS(P,0);

NO_PBOD:= NO_INSPECT_COUNT(P,0);

DSI(P.O):- NO_DATA + N0_PCALL + NO_PBOD;

N0_SS:~ N0_SS + DSI(P.O);

end loop;

end loop;

if LANGUAGE = FORTRAN then

NO_SS:= NO_SS*FORTRAN_CALIBRATE

elsif LANGUAGE - JOVIAL then

N0_SS:= NO_SS*JOVIAL_CALIBRATE

elsif LANGUAGE - ASSEMBLY then

N0_SS:- NO_SS*ASSEMBLY_CALIBRATE

else

N0_SS : «= NO_SS*ADA_CALIBRATE

end if;

FIGURE 116. EXAMPLE OF ADA CODE OF A PROGRAM UNIT'S BODY

280

if NO_SS > TWO_THOUSAND then --raise the exception

raise TOO_SMALL;

end if;

case COCOMO_MODE is

when ORGANIC ->

K:- 2.4 ;

E:- 1.05 ;

when SEMI_DETACHED ->

K:- 3.0 ;

E:- 1.12 ;

when EMBEDDED ->

K:- 3.6 ;

E:- 1.2 ;

end case;

COST_ESTIMATE (...);

SCHEDULE_ESTIMATE (...); -- execution of generic subprogram

exception -- handle the exception

when T00_SMALL =>

M0DULE_ESTIMATE;

end;

FIGURE 116. (CONCLUDED)

281

P2

PU_P1

P1

P3
PU_P2a PU_P2b

P2

P4

PU_P3

P3

P5

P2
PU-P4 PU_P5

P4 P5

FIGURE 117. LAYERS OF ADA PACKAGES

282

package Pi is

procedure PU_P1 (...);

end PI;

with P2;

use P2;

package body PI is

end PI;

package P2 is

procedure PU_P2a (...) ;

procedure PU_P2b (...);

end P2;

with P3;

use P3;

package body P2 is

end P2;

FIGURE 118. BASIC ADA CODE FOR ACCESSING PROGRAM UNITS
WITHIN ADA PACKAGES

183

with P4;

use P4;

package P3 is

procedure PU_P3 (...);

end P3;

with P5;

use P5;

package body P3 is

end P3;

package P4 is

procedure PU_P4 (...);

end P4;

package body P4 is

end P4;

package P5 is

procedure PU_P5 (...);

end P5;

with P2;

use P2;

package body P5 is

end P5;

FIGURE 118. (CONCLUDED)

284

All members of the development team must be familiar with the concept of
object-oriented design with Ada, and the cost ramifications of this
approach. Only when complex dependency relationships between types,
variables and program units are controlled, can large and complex software
systems be developed in a cost effective manner. The old traditional
approaches have proven to be expensive when used to implement large and
complex computer programs.

When teaching Ada to programmers, the source code can be taught in the
context of an object-oriented design in a top-down manner. This approach
provides a meaningful context for the many diverse Ada capabilities and
provides a framework for the programmer to understand the cost
ramifications of software implementation using Ada.

>85

PART THREE: AUTOMATION OF SHARP

CHAPTER IX

PHASED DEVELOPMENT OF AUTOSHARP

The graphics presented in this document have been, in part, prepared at
Arthur D. Little using an IBM dual drive personnel computer and the soft-
ware package FREELANCE written by Graphic Communications, Inc. The command
language of this software package is menu driven and relatively straight-
forward to learn and use. With this computerized drawing capability,
complicated diagrams presented in this report (e.g., the intermediate level
hierarchy and invocation diagrams) took about 15 minutes each to prepare.
The less complicated diagrams (e.g., low level subprogram data flow and
task rendezvous diagrams) took about 5 minutes each to prepare.

With the automation of SHARP, efficient interfaces between users of SHARP
and FREELANCE, or some other graphics software package, will be developed.

I. INTRODUCTION

1.1 BACKGROUND

An automated SHARP capability is needed in the short-term, as the DoD
software engineering community "gears up" for initial applications of Ada.
For example, a SHARP software system for teaching Ada would help students
attempting to grasp such complex notions as design abstraction and informa-
tion hiding, in the context of object-oriented design, as discussed in
Chapter VIII.

Furthermore, in the short-term software engineers will have to establish.
cost estimates for the development of Ada software. Existing cost models
can be used to project Ada costs, based upon a projection of the number of
source statements. An automated SHARP system for establishing the graphi-
cal representation of an Ada design provides a framework for projecting the
number of instructions required to implement a large and complex Ada
computer program, in the manner discussed in Chapter VII. Such projections
can be made automatically, as described in subsequent paragraphs of this
chapter.

As described in Chapters III and IV, an automated SHARP system would also
be invaluable in the long-term, when major defense system contractors
develop large and complex Ada computer programs. Such a graphical system
should prove to be helpful to both contractor personnel and government
personnel, especially in the preparation of graphics for design reviews and
design documentation. With a SHARP software design system, the SHARP Ada
abstracts could be generated in a timely manner, and easily iterated to
update or optimize an Ada design.

287

Furthermore, as suggested in the next section, a SHARP software system
should prove to be invaluable to Air Force personnel responsible for the
maintenance of a large Ada computer program.

1.1.1 Computer Aided Design

Computer Aided Design (CAD) tools have existed for years to support the
designers of electrical, mechanical and civil engineering systems. In the
last two years, the development of such CAD systems for the design of Ada
software has been initiated. For example, CAEDE (Carleton Embedded System
Design Environment) is being developed by R.J.A. Buhr at Carleton
University, Ottawa, Canada; and PAMELA (Process Abstraction Method for
Embedded Large Applications) is being developed and implemented in the
automated tool AdaGRAPH by George Cherry at The Analytic Sciences
Corporation (TASC).

Among other things, the following factors should be considered when develop-
ing a CAD system for Ada.

a. The design of a large and complex computer program to be
implemented in Ada should be represented in a comprehensive
but abstracted manner.

b. Process synchronization and the implementation of applica-
tions software should be kept simple to permit straight-
forward testing not necessitating elaborate and costly
proofs of temporal properties.

c. The number of Ada tasks used in the implementation of
applications software may have to be limited due to testing
difficulties and the limitations of hardware architectures
currently in existence. Existing hardware may not be able
to support a large number of interacting tasks in a timely
manner.

d. Dependency relationships between types, variables and
program units will have to be controlled to facilitate cost
effective software development and to save money during
software maintenance.

We feel that SHARP complies with item a. We also feel that because of items
b and c, extensive use of Ada tasks is not practical in the "real" world.
Furthermore, we feel that because of item d defense contractors will have
to take advantage of design techniques referred to as "object-oriented."
In contrast with CAEDE and PAMELA, SHARP has been developed with emphasis
on these factors.

SHARP can be used to represent low level design detail in a manner similar
to both CAEDE and PAMELA. However, it can also be used to directly repre-
sent higher levels of an object-oriented design. We feel this level of
design is very important. As demonstrated by the example presented in
Chapter IV, large and complex computer programs can be composed with layers
of objects. Objects can be implemented with a source statement count that

288

allows compilation in a timely manner. By stubbing interacting object
implementations, a given implementation can be relatively quickly compiled.
The development of the such object implementations will also be relatively
straightforward, as will be their integration if they are sufficiently
decoupled.

1.1.2 Knowledge-Aided Design (KAD) and Maintenance

An Ada KAD system can represent the design of an Ada computer program using
graphics, which represent the design in a comprehensive and abstracted
manner. With it, software designers will be able to relatively rapidly
generate abstracted design representations. The abstracts can be reviewed
and the design representation iterated in order to, in some sense, optimize
the design. Knowledge built into the KAD system will help guide inexperi-
enced designers lacking extensive knowledge of Ada and object-oriented
techniques. In this way, typical inefficiencies in design development and
representation will decrease.

Upon system turnover to users, graphical abstracts can be used to support
software maintenance. The maintainer would be able to selectively produce
abstracts that, in a systematic manner, zero in at the touch of a terminal
key on parts of the program he must modify. The abstracts would make the
complexities of the design readily apparent, as opposed to culling thou-
sands of statements in a source code listing. The exclusive use of source
code to maintain a large and complex computer program has proven to be very
expensive, as we have already indicated.

1.1.3 Automatic Programming and Cost Estimation

In addition to being used to establish design abstracts, a design knowledge
base established by a user of a KAD system could also be mapped into Ada
source code. The code would encompass aspects of the design directly
accounted for in the design abstracts. This code could, in turn, be
expanded and refined by a programmer using a syntax directed editor. In
the field of artificial intelligence, this capability is referred to as
automatic programming and knowledge engineering.

Knowledge Engineering utilizes expert knowledge and heuristics to generate
a computer program in a specific high order language. This is accomplished
by introducing the knowledge in the form of rule-type data structures,
which can be added to or removed from the knowledge base.

Automatic Programming systems are said to be knowledge-based when they
encompass knowledge or expertise for program synthesis, including program-
ming knowledge. Programming knowledge includes both programming language
knowledge and the semantics of the high order language in which the com-
puter program will be written. It may include general programming know-
ledge about such general computational mechanisms such as initialization,
loops, sorting, searching, linked lists and hashing. It also may include
planning, optimization, and high-level programming techniques.

289

1.1.4 Size Metric Derivation

The design knowledge base could also be mapped into a size metric. The
size metric, along with user inputs on the attributes of the software
acquisition, could be used as inputs to a cost estimation algorithm that
projects the cost to build a large and complex computer program. In this
way, the cost estimation problem is merged with the automated design
process so that meaningful estimates can be generated in a timely manner.

1.2 CHAPTER SCOPE

In this chapter, Section 2 provides an overview of AdaGRAPH and CAEDE, two
Ada-unique computer-aided programming systems. Section 3 suggests a phased
development of an Automated SHARP system, which we refer to as AUTOSHARP.
The system encompasses capabilities for KAD, Ada-unique automatic program-
ming and Ada-unique cost estimation.

2 EXISTING CAD SYSTEMS

As we have indicated, automated systems that support the design and imple-
mentation of Ada computer programs have been extensively investigated. As
examples of such systems, let us consider AdaGRAPH (PAMELA) and CAEDE.

2.1 AdaGRAPH (PAMELA)

AdaGRAPH is an automated system that supports the development of large
software systems in Ada. It automates the capabilities of PAMELA, which
(as we have indicated) is the requirements abstraction technique being
marketed by TASC. As such, AdaGRAPH acts as the syntax-directed graphical
editor and compiler of PAMELA.

PAMELA is an Ada-specific method for (a) transforming a software require-
ments specification into a design and (b) transforming the design into Ada
source statements. It supports a user in undertaking the following:

a. A 'Specification' step, where software requirements are
transformed into a hierarchical process graph. The user
develops a graph of external entities and the software
interfaces with them. This graph is then expanded in an
abstracted manner to show the major events associated with
each entity. The results can be iterated by the development
team.

b. An 'Architectural Design' step, where program units are
identified to implement the events established in the first
step.

c. A 'coding' step, where "skeleton" code is automatically
generated for program unit calls. Then using a syntax
directed editor, a programmer is able to establish the
detailed code needed to implement each of the called program
unit.

290

PAMELA functions on a semantic level but is not knowledgeable about the
heuristics of object-oriented design. When representing the design of an
Ada computer program, PAMELA is limited to only a hierarchy diagram of
program units and does not graphically distinguish between the different
kinds of Ada program units. As such, it does not provide a comprehensive
graphical representation of an Ada design, whether being developed using
traditional or object-oriented techniques. PAMELA also appears to be
preoccupied with extensive use of tasking (which we feel is not practical,
as discussed in Section 1.1.1) and does not provide an explicit mechanism
for representing object-oriented designs for Ada (which we feel will be
necessary for pragmatic reasons, as discussed throughout this document).

However, it does appear to provide a viable graphical mechanism for system-
atically presenting the requirements for a software package in an abstract-
ed manner. As such, it could be used at the requirements analysis level,
prior to comprehensively establishing an Ada design (e.g., using a tool
like AUTOSHARP).

2.2 CAEDE

CAEDE is an automated system that supports establishing the structural
design of Ada programs using icons. CAEDE allows the user to enter struc-
tural and temporal design information using a graphics interface. It
serves as a basis for design analysis and skeleton code generation. It
facilitates, under control of the interface, the entrance of program
"strips" to fill in the functional gaps in the skeleton code. The iconic
information is converted automatically into a Prolog design data base of
facts and rules, for off-line temporal assessment.

CAEDE represents design level abstractions modeled on selected features of
Ada as graphical icons. It supports a user in undertaking the follow;;
four steps:

a. A 'Structure of the Level' step, where a schematic diagram
of the program components and their interactions is
produced.

b. A 'Temporal Behavior' step, where temporal behavior is
described for tasks across interfaces, blocking and unblock-
ing of tasks at the interfaces, and the enabling and disabl-
ing of blocking conditions at the interfaces.

c. A 'Specification of Internal Temporal Characteristics' step,
where the designer specifies the characteristics that are
required to achieve the temporal interface behavior.

d. A 'Program Strip Definition' step, where sequential program
fragments are provided to fill in the gaps in the skeleton
code produced by the previous steps. They are entered into
the skeleton program using the iconic interface.

291

CAEDE uses Prolog rules to generate Ada code skeletons from the Prolog
facts in the design data base. Using Prolog for compiler implementation is
advantageous in that Prolog has the ability to perform translations given
only the translation rules. The system contains language syntax rules in
order to generate a legal program satisfying the syntax rules. Construc-
tion of Ada code under these rules proceeds until a decision must be made -
then the system consults the Prolog facts in the data base, resolves
issues, and produces the skeleton code.

CAEDE can be considered a prototype of a commercial CAD/automatic program-
ming system. Its method of nesting program units using icons is limited
(i.e., its graphical notation would be difficult to apply in large and
complex software systems). Like PAMELA, it is heavily oriented towards
extensive use of Ada tasks, which we feel is not practical.

3. PHASES OF DEVELOPMENT

SHARP provides a set of pictorial abstracts that can be used to represent
the design of an Ada computer program in a comprehensive manner. SHARP can
be used to represent all extremes of design with respect to both size or
design methodology. The abstracts of SHARP can be generated as a product
of a knowledge based intelligent design system for Ada, capable of design,
automatic programming and cost estimation. AUTOSHARP Version I provides an
Ada-unique capability for knowledge aided design (KAD). AUTOSHARP Version
II provides an Ada-unique automatic programming capability and AUTOSHARP
Version III provides an Ada-unique cost estimation capability.

3.1 AUTOSHARP VERSION I (KAD)

AUTOSHARP Version I is a KAD system used to establish the SHARP graphical
representation of the design of a computer program to be implemented using
Ada. Version I interfaces a user (a software designer) with software
graphical packages, which can be used to create pictographic abstracts of
large and complex computer programs to be implemented in Ada.

3.1.1 Version I Description

The core of AUTOSHARP Version I is a knowledge based system envisioned as
follows:

: AUTOSHARP

*

Description :
Method :

Natural Language, Description by Method
Example, and Graphical Description

Target :
Language :

Ada

Problem :
Domain

Efficient Object-Oriented Design and
Traditional Design Abstraction

System :
Approach

Knowledge Engineering

292

As shown in Figure 119, AUTOSHARP Version I will consist of (a) classic
primary elements -- a User Interface, an Inference Engine, and a System
Knowledge Base, and (b) task specific elements -- a Help capability, a User
Interface Enhancer, a Library of Reusable Software, a Graphics Mapper and
a Graphics Generator.

3.1.1a Primary Elements

The 'User Interface' will receive and manipulate information establishing
the design of the computer program. The user will enter data using menus,
tables and natural language interface.

The 'Inference Engine' will perform reasoning using domain specific
information. It will review the design as a function of the problem domain
to identify any potential design deficiencies, based upon rules formulated
within the Knowledge Base . The Inference Engine will detect missing
information and will bring such problems to the attention of the user.
The 'Knowledge Base' will encompass facts, definitions and rules applicable
to the consistency and completeness of the overall design.

3.1.lb Task Specific Elements

The 'Help Capability' provides a menu of selectable guidance to the
designer, relevant to the use of AUTOSHARP and both object-oriented design
(OOD) techniques and traditional techniques. For example, 00D help
includes tutorial information on object selection, operations unique to an
object implementation, local data structures and passing parameters between
object implementations.

The 'Library of Reusable Software' contains design information for existing
object implementations (e.g., a Fast Fourier Transform) and components used
to implement objects (e.g., math functions and routines for such things as
stacks, queues and trees).

The user 'Interface Enhancer' provides capability for enhancement to the
interface, allowing a diverse number of variations for information input
(e.g., a Natural Language (English) capability, Touch-screen capability,
Digitizing Pad capability, and Ada Command capability).

The 'Graphics Mapper' produces SHARP pictographic commands as a function of
the user generated knowledge. The Graphics Generator receives the commands
from the Graphics Mapper and produces SHARP pictographs on a display and/or
printer.

3.1.2 Version I Operation

With AUTOSHARP, an operator can describe the design of a computer program.
The description, in English, could be:

"Show MAIN as the main program with three tasks declared to
represent processes. The tasks shall be named COMM_LINK,
WORK STATION and BUILT IN TEST".

293

USER

ttk

HELP

USER/MACHINE DIALOGUE

USER
INTERFACE

INTERFACE
ENHANCER

KNOWLEDGE

KNOWLEDGE

BASE

INFERENCE
ENGINE

DESIGN
DATA

LIBRARY
REUSABLE
SOFTWARE

MAPPER

GRAPHICS
GENERATOR

DESIGN REPRESENTATION

FIGURE 119. ELEMENTS OF AUTOSHARP

294

The User Interface would accept this data, and the Knowledge Engineering
segments would, through the use of facts, rules, and heuristics, yield a
legal and correct Ada conceptual construct which would become input to the
Graphics Mapper. The Mapper would generate output for the Graphics
Generator yielding the SHARP abstract shown in Figure 120.

3.1.3 Scope of the AUTOSHARP Knowledge Base

It is envisioned that the Knowledge Base of AUTOSHARP will consist of rules
concerning the semantics, grammar, and features of the Ada language. In
addition, the knowledge base must include knowledge of the specifics of
SHARP and SHARP'S own internal rules. Knowledge about the rules them-
selves, metaknowledge or heuristics, must also be included.

The Knowledge Base is envisioned as having rules similar to these following
English-like examples:

"If this is the main program
then information is needed

on the number of packages that are to be 'withed',
on whether or not to 'with' TEXT I/O,
on whether or not to 'with' SEQUENTIAL I/O,
on whether or not to 'with' DIRECT I/O,
on the names of developed packages to be 'withed',
on the names of subprograms to be declared,
and on the names of tasks to be declared."

"If this is a process
then information is needed

on the number of objects,
on the alpha-numeric identifier of the first object,
on whether or not this object is a package or task,
on the names of other program units in the package with which

this unit will communicate,
on the name of an interacting object,
on the name of the second object,
on whether or not this object is a package or task,
on the names of other program units in the package with which

this unit will communicate,
on the name of another interacting object,

it

and so on.

"If this is an object
then information is needed

on the object name,
on the applicable process number,
on the visible data structure type definitions,
on the local data structure constant definitions,
on the names of communicating program units,

ii

and so on.

295

oooooooooooooooooooooooooooooo

o 0

3

cc
o
I-
<

LU
a.
O

<
CC
o
I- u
<
cc
H
CO

<
a. x
<
I
1/3

O

3
U

296

By codifying these rules into the knowledge base, the design problem can be
described very precisely with no ambiguity. Since the system is inter-
active with the user, any partial information can be elaborated via a
question and answer dialogue with the user. In this way, AUTOSHARP can
further specify the precise nature of the design.

3.1.4 Mapping the Output

As shown on Figure 121, SHARP abstracts will be available to the user
after the output from the Knowledge Base is processed through the Graphics
Mapper and the Graphics Generator. The Mapper will contain the facility to
translate the resultant design structure provided by the Knowledge Base
into a form suitable for input into the Graphics Generator. This segment
will, most likely, translate design structure commands into the appropriate
geometric form and, in order to view various size segments of the design,
manipulate the display into a suitable scale. The Graphics Generator
therefore need only be a relatively precise drafting/text generation
software package.

3.2 AUTOSHARP VERSION II (CODING CAPABILITY)

The second phase of the implementation of AUTOSHARP adds capabilities to
generate Ada source code listings that correspond to the design graphics
generated with Version I of AUTOSHARP. As shown by bold face in Figure
122, the core of AUTOSHARP Version II will add two elements to Version I --
an Ada "Skeleton" Code Generator and an Ada Syntax Directed Editor.

The Ada Code Generator uses the output of the knowledge base to provide the
programmer with existing code from the library of reusable software and
"skeleton" code of legal, correct Ada for the rest of the design estab-
lished with AUTOSHARP Version I. This code implements to the extent
possible the design represented by high, intermediate and low level SHARP
abstracts, and flags gaps where they exist.

The Ada Syntax Directed Editor can then be used by a programmer to refine
and complete the code. This editor, knowing the "rules" of the language,
provides the capability to produce the detailed Ada source code listings in
a computer-aided manner. It is used to integrate the detailed code into
the "skeleton" code produced automatically by the system. As an example,
suppose the system outputs the following "skeleton" code --

task body ALERTER is

select
ALARM.POST_ALARM (. . .);

else
. . . **Alternative Required**

end select;

end ALERTER;

where **Alternative Required** is a message from the system alerting the
designer that further information must be provided for legal coding. The
designer could then "flesh out" the code as follows:

297

si-n

r a < -

'Si ".

5 <

US

Ml

CO

tu
>
Q.
CC
<
I
CO

o
D
<

CM «—
LU
CC
D
O

V

298

Q_ —' -

in

z <
Q- a:
< UJ
X z
J l-J

V
-I in
< r.
- X

< £
- X z <

E 'J
< p

3 3

5 < *2

V

2
C
t/5

UJ
>

cc
<
X
c/)
O
h
<

IN

V
E ' ?

^8:

299

task body ALERTER is

select
ALARM.POST_ALARM (. . .);

else
accept STOP

end select;

end ALERTER;

At this point, the AUTOSHARP system is capable of the following:

Interfacing with the user
"Translating" user requests into a manipulatable form
Making inferences about Ada program design through use of
the Knowledge Base
Producing output to the Mapper
Producing Pictographs from the Mapper via the Graphics Generator
Producing Ada "Skeleton" Code
Producing Ada Source Code Listings

The utility of such a system is apparent in that the KAD/automatic program-
ming capabilities of AUTOSHARP would increase the productivity of software
designers and programmers. Therefore, a significant increase in the
productivity of software design and source code generation would yield
significant savings to the overall software development effort. These
gains are in addition to the gains that can already be realized through the
use of object-oriented design techniques implemented with Ada, as quanti-
fied in the manner described in Chapter VII and represented (for a
representative example) in Figure i of the Executive Summary.

3.3 AUTOSHARP VERSION III (COST ESTIMATION)

A basic task for a manager of a software acquisition is the calculation of
accurate cost estimates. Such estimates are needed by the government to
establish meaningful budgets, provide the basis to assess contractor bids
and monitor the progress of software work from a cost point of view.

Most existing software cost models operate on a projection of the software
size to establish their estimates. It is not possible to make accurate
cost estimates without accurate size estimates. The absence of a credible
size metric reminds one of the Vermont farmer who attempts to weigh his
pigs, before going to market. He carefully balances his scale using rocks
and then guesses at the weight of the rocks.

To avoid "guessing at the weight of the rocks", AUTOSHARP introduces seg-
ments needed to interlock the design process with the cost estimation
process. Specifically, as shown by bold face in Figure 123, AUTOSHARP
Version III will add elements to Version II -- an Estimation Interface,
Knowledge Base Accessor and Cost Estimate Calculator.

300

-
OJ

a
•
3

A

•J oc m -
Q O « £
Lu oo 31 5
j in r 5

g ^ - *
2 O o oo
Z < c n

I- Ui

< >-
_j »- <

8 ° - y O i-
v*- UJ

ra
w CD U *

5s.f1
Q- ^ ^3" 2
Q. i* - t
< "i ° E
S o o 5 £ - o

O g
I- o
< ^

o
<

9 ~

V
I/)

O

QC
UJ

>
a.
<
X
oo
O
K-
3
<

CM

DC

V
00 CJ

301

The Estimation Interface communicates with an estimator to establish data
describing the software acquisition (e.g., metrics describing product
attributes, the computer used, and development personnel).

The Knowledge Base Accessor will communicate with the Knowledge Base in
order to retrieve essential design data to accurately estimate the size
metric for the subject computer program.

Cost Estimate Calculator is specifically designed to process user and
knowledge base information using applicable algorithms for cost estimation
(e.g., COCOMO) customized to the design methodology to be applied.
Analogous to a spreadsheet, changes in the knowledge base's data used to
derive the program size and complexity can be communicated directly into
the cost model. Rather than relying on the traditional educated guess
regarding size and design variations, such information can be directly
extrapolated. In this way, the cost ramifications of design variations can
be assessed. The establishment of algorithms needed to make such an
extrapolation are provided in Chapter VII.

3.4 AUTOSHARP METAKNOWLEDGE

An inherent advantage to introducing rule based data within the knowledge
base is that the system can contain rules about the rules. Thus the system
itself is able to infer, within the accuracy of its original data, answers
to questions which are not typically answerable by a system. Consider
asking your word processor how many paragraphs are now in this document.
Because of the conceptual structures used to create representations of
knowledge, knowledge of the program itself is not transparent to the
system. As an example, AUTOSHARP will compare a user's design to that of
a KAD model of the design. Possible deficiencies in the user's design can
be detected and brought to the user's attention. Since the system can
"see" its own design and code, a query concerning the number of pictographs
and lines of code can be raised.

Additionally, key words can be counted or otherwise analyzed (depending on
the usual restraints -- how much memory is available, how sophisticated the
cost estimation search is allowed to be, etc.).

4 BENEFITS OF AUTOSHARP

The design of large, complex computer programs is a costly and challenging
process. Furthermore, a design will increase or decrease subsequent
software work during test, system integration and maintenance. Designers
of Ada unique software must typically establish a set of packages to
encompass all its major parts, must carefully design each package and its
interface to eliminate complex dependencies, and must design each package
in an abstracted manner. AUTOSHARP will help designers establish correct
designs, will help programmers establish error-free code and will help
managers by providing accurate reliable costing data. These capabilities
are all critical to lower costs in the development of software using Ada.

302

Through the use of a knowledge-base and KAD techniques inherent in AUTO-
SHARP, a designer can create a program design graphically. This design
will be consistent with the rules of Ada, and the resulting design graphics
will violate neither any tenets of the design philosophy nor any graphical
rules.

AUTOSHARP will produce "skeleton" code in accordance to a set of rules on
the grammar, syntax, structure, and typing of Ada. This "skeleton" code
will be correct when produced. This production of code will increase the
amount of viable coding being done by a programmer and, as a side effect,
constrain the universe of testing.

Inasmuch as the Knowledge Base contains rules and rules about rules,
inaccurate designs will be questioned by the system and designers con-
strained to designs within the parameters of proper object-oriented code.
This will, in the long run, create programs that are technically superior
and cost effective. Should large numbers or programs be created under a
single set of well-defined, well-constrained, and well-founded rules, the
style of such programs will be consistent and therefore familiar to the
professionals maintaining them. Because of this, they will be less dif-
ficult to maintain. Since software maintenance costs are very high, this
capability is significant.

Another beneficial capability of AUTOSHARP is the cost estimator. Given
accurate models, the system will have the capability to query itself and
provide data on the variables effecting the design cost. This information
should be significantly more readily available than it is now. Cost
estimation using AUTOSHARP could be such a facile task that metrics and
estimates could be generated essentially at the touch of a terminal key, as
opposed to several months of analytical effort. The estimates also could
be readily generated so that "what if" and design tradeoff studies could be
performed. More, importantly the accuracy of the estimates would be
superior to those produced in the past at great cost, since the estimates
would be driven by up-to-date and accurate projections of the software
size.

303

APPENDIX A

CRITERIA FOR SHARP

A. GENERAL

1. Graphical representation of a computer program to be implemented in Ad3
shall meet the criteria set forth in Paragraph B below.

B. CRITERIA

1. Pictographs for Program Units

a. A subprogram must be represented by a square.

b. A task must be represented by a parallelogram.

c. A package must be represented by a rectangle.

d. Each pictograph must be divided by a horizontal line into a narrow
part representing its specification and a wide part representing its
body. For a generic program unit, the dividing line is dashed.

e. The specifications of Ada subprograms and tasks contained within a
package, and directly accessed by program units external to the
package, must be shown within the package's specification. The bodies
of these subprograms and tasks must be shown within the package's
body.

2. Hierarchy Diagram for the Main Program of an Ada Computer Program

a. The Ada main program must be represented by the pictograph for i
subprogram.

b. A straight line must be drawn from the body of the Ada main program to
each pictograph used to represent an Ada task introduced to implement.
a process.

c. A straight line must be drawn from the body of the Ada main program to
each pictograph used to represent an Ada subprogram declared in the
Ada main program.

d. A small rectangle must be introduced to represent each Ada "with"
clause applicable to the Ada main program. A straight line must be
drawn from each rectangle to the specification of the Ada main
program.

e. A dotted line must be drawn from the specification of each Ada task
(representing a process) to a geometric representation of an external
interface with the task, when appropriate.

f. The name of each Ada subprogram, task and package must be clearly
shown within, or adjacent to the corresponding pictograph.

305

3. Ada Package Catalog

a. The names of Ada packages used in the implementation of a large Ada
computer program must be shown in a set of cells within a rectangle.
Each cell must contain the name of one package.

b. The name of a generic package must be encapsulated by a cell drawn
with dashed lines within the package's cell.

4. Ada Package Content Diagram

a. Visible program units declared in the specification of a package must
be provided in the pictograph for a package.

b. Hidden program units, other than a nested package, do not have to be
shown.

c. A nested package must be shown under the subject package, with a
straight line drawn from the body of the subject package to the
specification of the nested package.

d. A straight line must be drawn to the package's specification or body,
as appropriate, from a small rectangle to indicate a package "with"
clause.

e. The name of a package, nested packages and packages accessed through
the "with" clause must be clearly shown within, or adjacent to the
corresponding pictograph.

5. Hierarchy Diagram

a. The subject program unit must be assigned to Level 1.

b. Program units nested within the subject program unit must be assigned
to Level 2.

c. Program units nested within a program unit at Level n must be assigned
to Level n+1.

d. A straight line must be drawn from the body of a program unit at Level
n to the specification of a nested program unit at Level n+1. In this
way, all levels of abstraction must be established.

e. A straight line must be drawn from a small rectangle indicating a
package "with" clause to the program unit to which the clause applies.

f. The name of each subprogram and task, and each package accessed
through the "with" clause, must be clearly shown within, or adjacent
to, the pictograph that represents it.

306

6. Invocation Diagram

a. A straight arrow must be drawn to the specification of a subprogram
from the body of the program unit that called it.

b. A curved arrow must be drawn to the specification of an acceptor task
from the body of a calling task to represent task rendezvous.

c. A subprogram or task must be bounded by a square or rectangle if it
is contained within a package other than the package containing the
calling program unit. The bounding square or rectangle must be dashed
if the subject program unit is generic.

d. Any subprogram or task, which depends upon some transient condition in
order to be accessed (for example, 'select,' 'accept,' 'if,' or 'case'
statements), must be pictorially represented as if it were accessed.
The fact that such access is conditional must be expressed by a tilde
(i.e., a short undulating line) placed on the arrow indicating acces-
sion.

e. Except in recursive cases and loops, if a subprogram or task (i.e.,
any program unit) is called n times during the execution of a program,
the program unit must be shown n times in an invocation diagram.

f. Recursive calls must be represented by arrows with heads pointing to
both of two program units or by "feedback loops," with an asterisk
provided adjacent to the doubled headed arrow or "feedback loop."

g. The names of each program unit must be clearly shown within, or
adjacent to, the pictograph that represents it.

7. Task Rendezvous Diagram

a. A task entry point must be represented by a small parallelogram that
overlaps the task's specification and body.

b. A call to an Ada task must be represented by three arrows from the
body of the calling task to an entry point in the acceptor task. One
arrow must have its head pointing to the entry point, to represent the
"in" mode of parameter passing. A second arrow must have its head
pointing to the body of the calling task, to represent the "out" mode
of parameter passing. The third arrow must have two heads, thus
pointing to both the entry point and the body of the calling task, to
represent the "in out" mode of parameter passing. If one or more of
the modes are not applicable, the arrows can be omitted.

c. A conditional call must be indicated by tilde across the three arrows
running from the body of the calling program unit to the entry point.
The letter "T" is shown adjacent to the tilde a time conditional call
is to be made.

307

d. Conditional acceptance of a call must be indicated by a tilde within
the affected entry point, or the letter "T" within the entry point if
a time conditional acceptance applies. Acceptance on a fixed order
basis must be represented by numbers within the affected entry points,
where "1" indicates first. Acceptance on a first arrival basis must
be represented by a line connecting the affected entry points.

e. Parameters received by the accepting task must be represented by
shaded circles on the line representing the "in" mode; parameters
received by the calling task must be represented by shaded circles on
the line representing the "out" mode; and parameters transferred in
the "in out" mode must be represented by shaded circles on the line
representing the "in out" mode.

f. The names of each task must be clearly shown within, or adjacent to
the pictograph. Entry point names and names for passed parameters must
be clearly shown adjacent to the corresponding pictograph.

8. Subprogram Data Flow Diagram

a. A call from one subprogram to another must be represented by three
arrows drawn from the body of the calling subprogram to the specifica-
tion of the called subprogram. One arrow must point to the specifica-
tion of the called subprogram to represent the "in" mode of parameter
passing; one arrow must point to the body of the calling subprogram to
represent the "out" mode of parameter passing; and the third arrow
must have two heads, thus pointing to both the called subprogram and
the body of the calling subprogram, to represent the "in out" mode of
parameter passing. If one or more of the modes are not applicable,
the arrows can be omitted.

b. A conditional call must be indicated by a tilde across the three
arrows running from the body of the calling program unit to the
specification of the called program unit.

c. Parameters received by the called subprogram must be represented by
shaded circles on the line representing the "in" mode; parameters
received by the calling subprogram must be represented by shaded
circles on the line representing the "out" mode; and parameters
transferred in the "in out" mode must be represented by shaded circles
on the line representing the "in out" mode.

d. Names for subprograms and passed parameters must be clearly shown.

9. Generic Program Units

a. In the pictograph for a generic program unit, the horizontal line
drawn to divide a pictograph into a narrow part (representing a
program unit specification) and from a wide part (representing its
body) must be dashed.

b. In a data flow and task rendezvous diagram, circles representing
generic parameters to be passed must not be shaded.

c. The small rectangle used to represent the Ada "with" clause must be
dashed if the relevant program unit is generic.

308

10. Data Structure Diagram

a. Type declarations must be represented by a series of upright narrow
rectangles, side-by-side.

b. Constant declarations must be represented by a series right-slanted
rectangles, side-by-side.

c. Variable declarations must be represented by a series of left-slanted
rectangles, side-by-side.

d. The geometric representation of visible declarations must not be
shaded; the geometric representation of hidden declarations must be
shaded.

e. The geometric representation of private declarations must be half
shaded and half unshaded.

f. The name of each type, constant, and variable must be clearly shown in
a glossary. The glossary entries must be referenced by numbers placed
directly over the geometric figures representing each type, constant
and variable.

g. Directly under the geometric representation of a type, the letters
"AR" must appear if the type is an array type; the letter "R" must
appear if a record type; the letter "D" must appear if a discriminated
type; the letters "AC" must appear if an access type; the letter "T"
must appear if a task type; the letter "I" mustr appear if an integer
type; the lettrs "RL" must appear if a real type; and the letters "EN"
if an enumeration type.

h. Directly under the geometric representation of each constant and
variable, the type of the variable or constant must be represented by
(1) the first letter of a predefined type (e.g., I for INTEGER) or (2)
the letter "T" followed by the type glossary number of a defined type,
as appropriate.

11. Annotated Pseudo Code

Annotated pseudo code must be used to represent design requirements to be
implemented in the body of a subject program unit. The annotated pseudo
code must represent the design using text subject to the following use of
key words and annotation.

a. Pseudo code for logic and decisions must be introduced and terminated
by Ada control statements. These key words include 'if-then,'
'if-then-else,' if-then-elsif,' and 'end if.'

b. Pseudo code for loops must be introduced and terminated by Ada loop
statements. These key words include 'loop,' 'end loop,' 'exit,'
'while,' and 'for.' Nested brackets (closing on the right side) must
be used to identify the start and stop of program units, loops and
conditional clauses.

309

c. A called program encapsulated in an external package must be signified
by a small rectangle containing the name of the external package to
the right of the call, with a line drawn from the small rectangle to
the pseudo code for the call.

d. Pseudo code for generic instantiation must be bracketed (closing on
the right side) with a dashed line.

e. Pseudo code for exception detection must be introduced by the key
words 'raise exception' and must be bracketed (closing on the right),
where the right side of the bracket is diamond shaped.

f. Pseudo code for exception handling must be introduced by the key words
'exception handler' and must be bracketed (closing on the right),
where the right side of the bracket is diamond shaped. A line must be
drawn from the 'raise exception' bracket to the 'exception handler'
bracket.

310

APPENDIX B

SAMPLE ABSTRACTED ADA "SKELETON" CODE LISTING

with GLOBALJTYPES;
use GLOBALJTYPES;
procedure MAIN is

task COMM_A;
task body COMM_A is separate;

task COMM_B;
task body COMM_B is separate;

procedure INITIALIZE is separate;
procedure RESTART is separate;

end MAIN;

-- MAIN, Level 1, Unit a

(MAIN)
procedure INITIALIZE is

procedure PU_M2a is separate;

begin -- INITIALIZE

end INITIALIZE;

-- MAIN, Level 1, Unit b

separate (MAIN)
procedure RESTART is

procedure PU_M2b is separate;
procedure PU_M2c is separate;

begin -- RESTART

end RESTART;

•separate

MAIN, Level 2, Unit a

separate (MAIN.INITIALIZE)
procedure PU_M2a is

procedure PU_M3a is separate;

begin -- PU_M2a

end PU M2a;

- MAIN, Level 2, Unit b

separate (MAIN.RESTART)
procedure PU_M2b is

begin -- PU_M2b

end PU M2b;

- MAIN, Level 2, Unit c

separate (MAIN.RESTART)
procedure PU_M2c is

procedure PU_M3b is separate;
procedure PU_M3c is separate;

begin -- PU_M2c

end PU M2c;

312

*

-- MAIN, Level 3, Unit a

with P3;
use P3;
separate (MAIN.INITIALIZE.PU_M2a)
procedure PU_M3a is

procedure PU_M4a is separate;

begin -- PU_M3a

end PU M3a;

- MAIN, Level 3, Unit b

separate (MAIN.RESTART.PU_M2c)
procedure PU_M3b is

begin -- PU_M3b

end PU M3b;

MAIN, Level 3, Unit c

separate (MAIN.RESTART.PU_M2a)
procedure PU_M3c is

begin - - PU_M3c

end PU M3c;

•MAIN, Level 4, Unit a

with P6;
use P6;
separate (MAIN.INITIALIZE.PU_M2a.PU_M3a)
procedure PU_M4a is

begin - - PU_M4a

end PU M4a;

313

- THREAD A, Level 1, Unit a

separate (MAIN)
task body COMM_A is

procedure PU_A2a is separate;
task PU_A2b is

entry A;
entry B;

end task PU_A2b;
task body PU_A2b is separate;

begin -- COMM_A

end COMM_A;

THREAD A, Level 2, Unit b

separate (MAIN.COMM_A)
task body PU_A2b is

procedure PU_A3b is separate;
procedure PU_A3c is separate;

begin -- PU_A2b

end PU A2b;

THREAD A, Level 3, Unit a

with P7;
use P7;
separate (MAIN.COMM_A.PUA2a)
procedure PU_A3a is

procedure PU_A4a is separate;
procedure PU_A4b is separate;

begin -- PU_A3a

end PU A3a;

314

- THREAD A, Level 3, Unit b

separate (MAIN.COMM_A.PU_a2B)
procedure PU_A3b is

begin -- PU_A3b

end PU A3b;

THREAD A, Level 3, Unit c

with P9;
use P9;
separate (MAIN.COMM_A.PU_A2b)
procedure PU_A3c is

begin -- PU_A3c

end PU A3c;

THREAD B, Level 1, Unit a

separate (MAIN)
task body COMM_B is

procedure PU_B2a is separate;
task PU_B2b is

entry C;
entry D;

end task PU_B2b;
task body PU_B2b is separate

begin -- COMM_b

end COMM B;

315

-- THREAD B, Level 2, Unit a

separate (MAIN.COMM_B)
procedure PU_B2a is

procedure PU_B3a is separate;

begin -- PU_B2a

end PU B2a;

THREAD B, Level 2, Unit b

separate (MAIN.COMM_B)
task body PU_B2b is

procedure PU_B3b is separate;
procedure PU_B3c is separate;

begin -- PU_B2b

end PU B2b;

-- THREAD B, Level 3, Unit a

separate (MAIN.COMM_B.PU_B2a)
procedure PU_B3a is

procedure PU_B4a is separate;

begin -- PU_B3a

end PU B3a;

316

-- THREAD B, Level 3, Unit a

separate (MAIN.COMM_B. PU_B2a)
procedure PU_B3a is

procedure PU_B4a is separate;

begin -- PU_B3a

end PU B3a;

- THREAD B, Level 3, Unit b

with P9;
use P9;
separate (MAIN.COMM_B.PU_B2b)
procedure PU_B3c is

procedure PU_B4c is separate;

begin -- PU_B3c

end PU B3c;

THREAD B, Level 4, Unit a

separate (MAIN.COMM_B.PU_B2a. PU_B3a)
procedure PU_B4a is

begin -- PU_B4a

end PU B4a;

317

THREAD B, Level 4, Unit b

separate (MAIN.COMM_B. PU_B2b. PU_B3b)
procedure PU_B4b is

begin -- PU_B4b

end PU B4b;

- THREAD B, Level 4, Unit c

witb P10;
use P10;
separate (MAIN.COMM_B.PU_B2b. PU_B3c)
procedure PU_B4c is

begin - - PU_B4c

end PU B4c;

-- PACKAGE P3

package P3 is

end P3;
package body P3 is

end P3;

318

>

-- PACKAGE P6

package P6 is

end P6;
package body P6 is

end P6;

-- PACKAGE P7

package P7 is

end P7;
package body P7 is

end P7;

-- PACKAGE P8

package P8 is

end P8;
package body P8 is

end P8;

319

-- PACKAGE P9

package P9 is

end P9;
package body P9 is

end P9;

-- PACKAGE P10.

package P10 is

end P10;
package body P10 is

end P10;

320

APPENDIX C

REQUIREMENTS FOR A HYPOTHETICAL SPACE STATION COMPUTER PROGRAM

1.0 INTRODUCTION

This specification presents requirements for a computer program to operate
in a hypothetical space station. The computer program shall provide
capabilities for:

a. Experiment data collection and processing

b. Environmental sensor monitoring and alarm generation for out

of bound environmental readings

c. Space station solar panel orientation correction by command

from ground control stations

d. Built-in test of the computer hardware

1.1 EXPERIMENT DATA COLLECTION AND PROCESSING

1.1.1 Data Collection and Storage

The program shall collect data for three experiments and assemble data
samples. A data base shall be established to store experiment data samples
in local memory for immediate processing. Provisions shall be for archiv-
ing an experiment's data samples in a mass memory medium or when the
allocated local memory is full.

1.1.2 Operator Interface

A work station interface shall be provided for operator input. The
operator shall be able to enter commands for viewing available data
samples or initiating statistical processing of a data sample

1.1.3 Data Processing

The operator shall be able to initiate the calculation of a data sample's
mean, standard deviation, and statistical distributions (i.e., normal or
Poisson). The results of the calculations shall be displayed on the work
station.

321

1.2 ENVIRONMENTAL SENSOR MONITORING

1.2.1 Sensor Interface

The program shall interface with sensor hardware to take power, temperature
and pressure readings for the space station.

1.2.2 Sensor Checking

A range of suitable sensor readings shall be established by the computer
program (default boundaries) or shall be provided by operator chosen input.
Sensor readings shall be compared with the range of suitable values and an
alarm generated if a sensor reading is out of bounds.

1.2.3 Operator Interface

An interface with a work station shall be provided for operator setting of
sensor value ranges and for display of alarm messages.

1.2.4 Alarm Report

An alarm report shall be generated at the work station operator console if
sensor checking makes a sensor out of bounds determination. The alarm
message shall also be recorded in mass storage.

1.3 SOLAR PANEL ORIENTATION CORRECTION

1.3.1 Update Orientation

The program shall receive an angle pair from earth ground stations giving
the correction for the solar panel orientation. The new solar panel
orientation shall be calculated from the old orientation. The new orienta-
tion shall be transmitted to earth.

1.3.2 Solar Panel Arm Motions

The program shall calculate the needed solar panel mounting arm motions
needed to orient the solar panel, given the old orientation and the new
orientation. The program shall generate control information to two solar
panel mounting panel motors to reorient the solar panel.

1.4 COMPUTER PROCESSOR BUILT-IN TEST

A test suite of Ada instructions shall be run to monitor the fitness of the
computer processor. The test suite shall exercise the computer processor
instruction code and memory use. Unexpected results shall be reported at
the sensor monitoring work station.

322

APPENDIX D

ACCOUNTING FOR CHARACTERISTICS OF A SOFTWARE ACQUISITION USING COCOMO

1 INTRODUCTION

COCOMO utilizes coefficients to account for characteristics of a software
acquisition. Specifically, the estimation algorithms of Intermediate and
Detailed COCOMO contain 15 coefficients. Each coefficient is a function of
a different attribute of the software acquisition being estimated. As
described in Section 2.3.1 of Chapter VII, coefficients account for the
characteristics of the software product to be developed, the computer to be
used, the personnel to do the work, and other project considerations.

2 VALUES OF COCOMO ATTRIBUTE COEFFICIENTS USED IN INTERMEDIATE COCOMO

2.1 Estimating Development Costs and Schedule

When estimating development costs and schedule duration, COCOMO Attribute
Coefficients are given by the relationship:

where n n

A1 - required software reliability
A„ - data base size
A_ - product complexity
A, - execution time constraints
A - main storage constraint
Afi - virtual machine volatility
A - computer turnaround time
Afi - analyst capability
Aq — applications experience
A1 n - programmer capability
A.. - virtual machine experience
A1^ - programming language experience
A, ., - use of modern programming practices
A,, - level of tool support
A - schedule constraint

The set of values possible for each attribute, the meaning of each value,
and the corresponding coefficient value is given in Table D-l.

2.2 Estimating Maintenance Costs

When estimating maintenance costs and schedule duration, the coefficient
values are selected from Table D-l, except for the coefficients C1, C., and
C. These coefficients have unique values for maintenance. The unique
values are given in Table D-2.

323

n
u AJ
*J c

Q. <H
C U

CU la.
*J C1

3 C
.C O

1- T5
AJ 4,
AJ ~J
< B

i—i
O Ov

o
U a-
o c o
a- C
o c

a —
a; >

•- a
— a a
-o a ~ a c a a H4 **J • — — u W a

a x o x •- a a
II a n ^ C a 3 * *^ — *J a o at I >•> O. C b a c
X

a
s o c a
C u o

M
3

M
a

a
X

•a-'

a u a u •- a U a a 1 --< a ti 1 m » — a o
3 ••* w — •— a.

a. c a u •
K at £ •^

a a a a w • M • c - - -o a —
a 0 -O a a
o hi a

— *- U a a* •

K — •«4 o a a a
••1 a "8 pa a* a • *-« X X a c — a

a a 3
w --. a — a oc
o. a ••> o a» c

a a X o
a ft a » a O C 1. — - • ^ •»4 "0 a

w x •«a a. a» —. •«* ai *a «* a a o a « —• a — a o a a » a a
1 a a a a ft. - o a a

a a 0 a e
c -o a

a • a
oal v >M I a
W- a M •a at
0 •w • as a w a a a O o •
• •a M aj — — — I a

IN
i

8
- u = a ~

- a. •* -D a -
a
a

a
a

a > - o at •» 0 •« •- S s H <
1 Cl a a • —

-•at * — a a. a -a * 9 ^ "«
0 a -O O "O C C X "• a

0
a u c •- — ».
£ a " —
v a o a • > V II a

• a— \J a > ft. s a
•~ S 5 c a

a X ft « A A c o • X *j

Nl O •» — A o a a o a ^ • X *- C
y X o o u a u *c o M ~ c i •— *. a c — o a a • a a> a e 2

C • > a - II > V
•• 9 u - M a

o a -o c » a lit <M

2 u > c o V a a a ••* WJ C J3 -H

U V o 0 o >- a — — o - a a IN €N •or ft
3 c w. a u O V) I—" o a - « a w — a a o o a >
X ec 0. c — c co — •< a a i a a o o •- ai a c • —

c ft b *»» a a c c c - - a* w 9 • a —' t_ /MO --. V — a xx a X • «N X U
B a a >. a oc oc a h a j< J M — — c

h — X — V •— ••i te M — ••* -•« Q o >< a a C k ha-
M X ft — oC ta V| co - c x a a « m a O O • ft. * CVC "C • — a c B a E ow e •ai

m X £ C.
-~ o - — o

a £ oc x v. Cr. in
O O

o> 00
e o

(N — r* — <N ft — < — c

a

a
K
a
a
ec
a
h
a

X X X X X

9

k- <i a x

<— — -a*

O'OK^ ^ C O ^
:4 - o« ^ «oo»

•* O 0^ o ^ o
* n - ooo ^

«s — >c o
»r\ fN o o

O >^ o r^
ri — o CO

k^ f^. O ^*
— O O co

NGCTOX— rs — C
J -Ol - cccc

I c c c c

» re
0£ iJ
c c

co ty
CC a.

01 S.

a
x

E r
a 5

i a K a > -
i a •-* o o a
I > z z -i >

?! I . c > z z —

c
a ><X - w a oc a * k.
• a - 6 o a

ai > x z -9 >

>• k. >, x

a) > x

OCX
••< aO
X -

k. JsX -
o H a — 8 z a: > x z

x
OC

Jj

OC at J
e

X a x a J
c c

>>x - >.x - ?~
a. oc I a
a - 5 o

k. oc a a •
a

> x z _ > = 2 _ >
oc E a

os re
IK <J

o •<*
CU a.

01
e 9
z

ft • •4 ai
•ai •0 a — •M

i a a - a. M
a a X u a

a* "X ail 9 —
3 k. 3 *» — a a a <0 Ok
a — C7 — — a. • M £ § e — a o a + 3 — B « w •"" «e at a) oc a o

at
e c c

»N -a
c

c a
o ••< • a4 • •4 a 9 •a — c
•- • a a — a — a o *j •• a a
*- a at a a c - ** a a •-* u —
9 k- • «i 9 •« on 9 a >sX •M a
w a a
a i e

C a a aj x a a c a
a a |
0 9-

— a — a
•- o c aj u »- • a a a

H f 6 a - o •- a o > i > e a a x
a H o Xnu O 1- H «f <J < ka

o — 00 9>
U

324

I
a
a

1

> <
4,

O

s !
o , «*• C «^ C -

•a IN ** r ^ *j

a

o • • a.
O a o

*
-—x

w a o — o •a *t 1
o o o - a c 0

fc- *-« ** o c • — —
4. to, to •to w *--•

w to- to to 0
§ s c 3 4. «. b a tr~

V O. ~ " 4. a c • — —
t 3 3 - I.
0 0> & 3 u

UJ
v « & • U W — • —«
w c hi c • •I U • I O. O o • »—> •—) V

i i 0 II tH & -COS- G * c k> 1 *— to. OC x u u 0 a. t, •- C C c c
ft. c a — -- KJ ©

it
1

O 0
hi

O •o a. OC
a M c — u

a — c u
• II--

! S £ _to
• • c > c c c c

ae a x x II X ~ ace to » C C ha «M •— C
c to W *- to. a to: M M M e w OC OC O O C >— w- —

• — c c c c « « c C >s ft- • c C C C U u c o c -* ! c £. -C -= X X ft- ft. 3 - ft. • to t > > u •m «, • CO — — M W — a.

c >-. >. ft E •i >, e t (X C ft. o£ c ft* to to tc c o o CM*-* 0 •• C

X.
C aT J" .T- fcft
0* p*. «^ fi •— <-. — ^ — r— — ««* — - — >

X < <
ft. c

Oft Z
•e _ — a s
< to w. aft c

ao m
z oc -- C

"•"

© z. c c _•
e c © c c

U
IT:
O

i

Ed

<

__ z i O <£ o —. r>. c~. C e — ir o r-^ ^ rx — ft^ a 4 <~l M o ftO NT o •» o cc •»1 a. M JC - — f» 00 c — -? c a — r^. c c C — oo t^ c — PN OC t> o — r^ — o o c: r-< "3 £ M - = — •an

u > I Z, © c c © O o o V
w
m

z

0
X

i 1 -to.
e •" c

n ._; ^ .= X. M Cto — X J -» > »L a OC J OC > £ l_

c c — — ~. — C — = ••• — a •to — c to — s hj M c -: ^ _z r: •— c — c ftftl a X c _J X a c
c c B E c - -r.

F — SHkfi — >-- -c — ?-• ^ — ^ >s £ — >• >> X -. >-. > — 'to >N M -= — . - OC 1 J H. =-: H J a. Ml i > k. W OC
.• 1 to to OC fr > to to M ! > u c — X - i- _^ 0. — S ft 4. - c 0, 4 - r. J

c- -XI 1 > = -t — > ^ z > — z — > > X X. — > > X z J > > X 3L — > c £

— >s

i ;1-
h. X
oc a c a

•- «.
a c •
S —
- x to -

3 -
OC 1
c c

B «.
• u

«. c a --<
O to - to.

4, OC U
4. -c o a
a o to to

_> X a. a.

w. a.
O 3

t. •
X to
u O n u

OP
c

« o

V.
I-- c

fN X f~ —

325

TABLE D-2 POSSIBLE RATINGS FOR COCOMO ATTRIBUTE INPUT AND
RELATED COCOMO COEFFICIENTS UNIQUE TO MAINTENANCE

Input Permissible Coefficient Product
Coefficient Attribute

Required

Rating Value Size

Cl
Very High 1.10

Software High 0.98
Reliability Nominal

Low
Very Low

1.00
1.15
1.35

N/A

C13
Use of Very High 0.81 2,000
Modern High 0.90
Programming Nominal 1.00
Practices Low

Very Low
1.12
1.25

Very High 0.77 8,000
High 0.88
Nominal 1.14
Low 1.14
Very Low 1.30

Very High 0.74 32,000
High 0.86
Nominal 1.00
Low 1.16
Very Low 1.35

C13
Use of Very High 0.72 123,000
Modern High 0.85
Programming Nominal 1.00
Practices Low

Very Low
1.18
1.40

Very High 0.70 512,000
High 0.84
Nominal 1.00
Low 1.20
Very Low 1.45

c. Schedule Very High 1.00
Constraint High 1.00

Nominal 1.00
Low 1.00
Very Low 1.00

N/A

326

3 VALUES OF COCOMO ATTRIBUTE COEFFICIENTS USED IN DETAILED COCOMO

3.1 Coefficients Variable at the Module Level

COCOMO coefficients for Detailed COCOMO vary by phase. Four of them also
typically vary from module to module. Specifically, C. as a function of
product complexity, C.^ as a function of programming capability, C. as a
function of virtual machine experience and C. „ as a function of programming
language experience vary by both phase and module. The estimator selects
values for them for each specific module from the values given in Table
D-3.

3.2 Coefficients Fixed at the Module Level

With detailed COCOMO certain coefficients vary by phase but are relatively
fixed from one module to another. These coefficients are shown in Table
D-4.

327

TABLE D-3 DETAILED COCOMO, ATTRIBUTE COEFFICIENTS
VARIABLE BY MODULE AND PHASE

Permissible Phase Number (p)

C3 Very Low .70 .70 .70 .70
Low .85 .85 .85 .85
Nominal 1.00 1.00 1.00 1.00
High 1.15 1.15 1.15 1.15
Very High 1.30 1.30 1.30 1.30
Extra High 1.65 1.65 1.65 1.65

C10
Very Low 1.50 1.50 1.50 1.50
Low 1.00 1.20 1.20 1.20
Nominal 1.00 1.00 1.00 1.00
High 1.00 .83 .83 .83
Very High 1.00 .65 .65 .65

Cll
Very Low 1.10 1.10 1.30 1.30
Low 1.05 1.05 1.15 1.15
Nominal 1.00 1.00 1.00 1.00
High .90 .90 .90 .90

C12
Very Low 1.02 1.10 1.20 1.20
Low 1.00 1.05 1.10 1.10
Nominal 1.00 1.05 1.10 1.10
High 1.00 .98 .92 .92

P - 1 for the product desi .gn phase

P = 2 for the detailed design phase

P - 3 for the code and unit test phase

P = 4 for the integration and test phase

328

TABLE D-4 DETAILED COCOMO, ATTRIBUTE COEFFICIENTS
FIXED BY MODULE AND VARIABLE BY PHASE

Coefficient
Permissible

Rating
Phase Number (p)

1&2 3 4 5

« Cl
Very Low .80 .80 .80 .80
Low .90 .90 .90 .90

% Nominal 1.00 1.00 1.00 1.00
High 1.10 1.10 1.10 1.30

V Very High 1.30 1.30 1.30 1.70

C2
Low .95 .95 .95 .90
Nominal 1.00 1.00 1.00 1.00
High 1.10 1.05 1.05 1.15
Very High 1.20 1.10 1.10 1.30

C4
Nominal 1.00 1.00 1.00 1 . oc
High 1.10 1.10 1.10 1.1 .-•
Very High 1.30 1.25 1.25 1.40
Extra High 1.65 1.55 1.55 1.95

S Nominal 1.00 1.00 1.00 1.00
High 1.05 1.05 1.05 1.10
Very High 1.20 1.15 1.15 1.35
Extra High 1.55 1.45 1.45 1.85

C6
Low .95 .90 .85 .80
Nominal 1.00 1.00 1.00 1 .00
High 1.10 1.12 1.15 1.20
Very High 1.20 1.25 1.30 1.40

C7
Low .98 .95 .70 . 90
Nominal 1.00 1.00 1.00 1.00
High 1.00 1.00 1.10 1.15
Very High 1.02 1.05 1 20 1.30

C8
Very Low 1.80 1.35 1.35 1. 50
Low 1.35 1.15 1.15 1.20
Nominal 1.00 1.00 1.00 1.00
High .75 .90 .90 .85
Very High .55 .75 .75 .70

C9
Very Low 1.40 1.30 1.25 1 . 2 D
Low 1.20 1.15 1.10 1.10
Nominal 1.00 1.00 1.00 1.00

fc_ High .87 .90 .92 .92
H Very High .75 .80 .85 .85

329

TABLE D-4 DETAILED COCOMO, ATTRIBUTE COEFFICIENTS
FIXED BY MODULE AND VARIABLE BY PHASE

(continued)

Permissible
Rating

Phase Number (v)
Coefficient 1&2 3 4 5 4 *

C13
Very Low 1.05 1.10 1.25 1.50

r

J Low 1.00 1.05 1.10 1.20
Nominal 1.00 1.00 1.00 1.00
High 1.00 .95 .90 .83
Very High 1.00 .90 .80 .65

C14 Very Low 1.02 1.05 1.35 1.45
Low 1.00 1.02 1.15 1.20
Nominal 1.00 1.00 1.00 1.00
High .90 .95 .90 .85
Very High .95 .90 .80 .70

C15 Very Low 1.10 1.25 1.25 1.25
Low 1.00 1.15 1.15 1.10
Nominal 1.00 1.00 1.00 1.00
High 1.10 1.10 1.00 1.00
Very High 1.15 1.15 1.05 1.05

330

i

1

REFERENCES

1. Buhr, R. J. A., System Design With Ada, Prentice-Hall, Inc., Englewood
Cliffs, New Jersey 02632 (1985).

2. Young, S. J., An Introduction to Ada, John Wiley & Sons, New York, N.Y.
1983

3. R. G. Howe, et al, Program Manager's Guide to Ada, ESD-TR-85-159, The
MITRE Corporation, Bedford, Massachusetts (1985). AD B092503L

4. Booch, G. , "Object-Oriented Development," IEEE Transactions on
Software Engineering, Volume SE-12, No. 2 (1986).

5. Barnes, J. G., Programming in Ada, Addison-Wesley Publishing Company,
London (1982).

6. Booch, G., Software Engineering With Ada, Benjamin/Cummings Publishing
Company, Inc., Menlo Park, California (1983).

7. EVB Software Engineering, An Object Oriented Design Handbook for Ada
Software, EVB Software Engineering, Inc., Rockville, Maryland (1985).

8. Boehm, B. W., Software Engineering Economics, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey (1981).

9. G. A. Miller, "The Magical Number Seven, Plus or Minus Two", The
Physchological Review, Volume 63, No. 2, March 1956.

10. Clapp, J. A., A Study of Computer Resource Utilization in ESP Weapon
System Acquisitions, AD A125641, The MITRE Corporation (1982).

11. Najberg, A. C. and Healy, R. D., "The Impact of Ada on Software
Development Costs", The Analytical Sciences Corporation, Reading,
Massachusetts (1984).

12. "Software Productivity", Volume 1, Number 1, Software Productivity
Research, Inc., (1986).

13. John H. James, "Validation of Some Software Cost Estimation Models",
The MITRE Corporation (1984).

331

